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INTRODUCTION 
 
The estimation of projective transforms be-
tween image pairs has important applications 
in computer vision. Some authors use pairwise 
projective transforms to stitch images together 
into mosaics [1][2] while others use them as 
the first stage in deriving depth and camera 
motion estimates [3][4]. More recent schemes 
apply global optimization, or at least adjust-
ment, of transform estimates, but the pairwise 
estimation of projective transforms remains an 
important step. And while there are alternative 
transforms that can be used for mosaicing from 
a camera rotating about its optical centre 
[5][6], full projective estimation is necessary 
to mosaic a plane from a video sequence with 
free camera movement. In this paper I report a 
method for projective transform estimation 
between pairs of frames, and its use in a real-
time mosaicing program.  
 
The projective transform from an image in 

 to an image in [  is given by [ ]Τyx, ]Τyx ˆ,ˆ
 
 
 
                                                                  (1) =
 
 
 
Estimation of the transform requires a search 
in eight-dimensional parameter space for a set 
{a11, a12, a21, a22, b1, b2, c1, c2} that when ap-
plied to all the points in one image gives the 
closest possible match to the other image. Lu-
minance values must be used to steer the 
search. A direct algorithm (like [1],[2] and the 
one reported here, as opposed to a feature-
based algorithm [7]) works by minimizing 
some disparity measure between values in one 
image and values at corresponding trans-
formed coordinates in the other. The usable 
domain and range of the transform depend on 
the image sizes and the transform parameters. 
Only the overlapping region of one image and 
a transformed version of the other can be used 
in a disparity calculation.  
 
THE SAM ESTIMATOR 
 
The estimator to be described here is called 
Simplex-Adapted Mesh (SAM). It has two 

stages – a translation estimator and a projec-
tive transform estimator. The first stage is con-
ventional but described briefly below for com-
pleteness. The second stage involves the ma-
chinery referred to in the name – a sparse sam-
ple mesh and the Nelder-Mead simplex – and 
is more novel. For convenience I use SAM to 
refer to the whole method. 
 
Stage 1: Reliable Translation Estimation 
 
The estimator’s first stage is a reliable transla-
tional estimate that provides tolerance to noise, 
illumination change, and small object move-
ment within the scene.  The estimator builds an 
image pyramid then does a wide area full-
search match at the highest (i.e. smallest size) 
level. For every displacement up to half the 
image size, it determines the overlapping 
(matching) region and calculates the mean 
difference between the two images in this re-
gion.  The mean is subtracted from each indi-
vidual pel difference before summing up all 
the absolute values of differences in the over-
lapping region. The minimum mean disparity 
value provides the first estimate of translation 
at the highest level of the pyramid. This value 
is then projected down the pyramid, where it is 
refined level-by-level using a gradient descent 
algorithm. The difference in means of overlap-
ping areas is also projected down and main-
tained in the search at each level.  At the final 
(bottom) level of the pyramid, a full-resolution 
block the size of the overlapping area is used. 
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Because the translational stage begins with a 
wide area full search it matches accurately 
over a wide range. The continuous adjustment 
for the mean of the overlap region provides 
protection against global level change. This 
mean adjustment is carried forward to stage 2 
of the estimator so that it too is resilient to 
changes in overall luminance level. 
 
Stage 2: Simplex Optimization over a Mesh 
of Samples 
 
The second stage of the estimator is a gener-
ate-and-test optimization procedure. It has two 
unusual features: first, its criterion function, 
and second, the optimization method.  
 
SAM uses a mesh or grid of coordinates for 
which candidate transform values are calcu-
lated and which then sample the two images. A 
disparity value is computed from a weighted 
sum of the absolute differences in sample val-
ues. The weighting attenuates high absolute 
differences to limit the effect of localized mov-
ing objects.  



The grid of samples may be square or quin-
cunx. No prefiltering is used in either image, 
so at a local level, sample matches are subject 
to aliasing effects. But the mesh is not in-
tended as a scaled image representation. Rather 
it is a way to distribute effectively random 
samplers over the candidate transformation’s 
range and domain. The sample spacing is uni-
form – but that is simply a convenience for fast 
transform calculation. There is no relationship 
between image structure and where the sample 
mesh happens to fall, so clearly it is possible to 
be unlucky and miss useful image features. 
SAM relies on distributing enough samples 
through the image as a whole that this is 
unlikely to matter. In practice, all meshes finer 
than 1 in 16 image samples have comparable 
performance and SAM usually runs reliably 
with sparser meshes. The spacing is the only 
parameter of the method and varying from 1in 
16 to 1 in 100 trades accuracy for speed.  
 
The weighted sum of absolute differences over 
the sample mesh is used as the criterion func-
tion for optimization by the Nelder-Mead sim-
plex method [8]. This method is not the linear 
programming simplex used in [9], but a gen-
eral unconstrained optimization technique. It is 
the second unusual feature of the estimator. Its 
only other application to image correspon-
dence analysis of which I am aware is [10], 
where it was used for estimating the transla-
tional motion of square blocks. 
 
The Nelder-Mead simplex requires the main-
tenance of 9 candidate transforms and their 
iterative adjustment.  Each candidate transform 
is a particular set of the eight parameters a11, 
a12, a21, a22, b1, b2, c1, c2, in equation 1 and 
therefore corresponds to a point in 8-
dimensional parameter space. These nine 
points form the vertices of the simplex. Geo-
metrically, the simplex method involves 
changing the shape of this hypersolid by sys-
tematic movement of the vertices towards the 
minimum, until they are close enough together 
to meet a termination condition. 
 
The simplex method is sometimes regarded as 
inefficient because its exploration of directions 
in multidimensional space is guided by “acci-
dental” configurations of simplex vertices 
rather than local gradient near the current 
search point. Yet this indeterminacy appears to 
work well in popping the simplex out of local 
minima. Because of the structure of pictures, 
local optimization minima occur near the 
global minimum. Once the “catchment area” of 
a local minimum has been reached by a gradi-
ent descent algorithm, that minimum will 

quickly be returned as the true minimum. In 
contrast, the simplex method continues to ex-
plore other possibilities as its vertices draw 
together. I have verified experimentally that 
using conjugate gradient descent in place of 
the simplex in SAM results in much more fre-
quent convergence to false minima. I believe 
that this argument applies equally to other effi-
cient local minimization schemes such as the 
version of Levenberg-Marquardt used in [1]. 
 
A second benefit of simplex is that the initiali-
zation of vertices can be done systematically, 
according to the expected variation in each of 
the dimensions. SAM does this by setting up 
the vertices one-by-one by orthogonal one-
dimensional searches, with directions and step 
sizes derived from a prior analysis of many 
video samples. That is, the directions in which 
the simplex is initially constructed are chosen 
to shape it to explore the most common trans-
forms encountered in practice. Each 1D search 
ends when the vertex and its predecessor span 
a good 1D minimum.  
 
Finally, if the initialisation values are particu-
larly bad for a given case, the simplex changes 
shape to move quickly towards better vertices. 
In doing so, it grows in size, automatically 
lengthening the search time, but ensuring that, 
once values in the vicinity of the minimum are 
found, the simplex will converge slowly 
enough to avoid false minima. 
 
Once a minimum has been found it is possible 
to restart the simplex with noisy values as a 
check for a false minimum. In a large number 
of tests this has yielded an improved result in 
less than 0.5% of cases. The standard method 
therefore runs the simplex only once. 
 
REAL-TIME MOSAICING PROGRAM 
 
SAM is incorporated into a program for real-
time mosaicing. The design criteria for this 
program were: 
1. It must be fast enough to mosaic 320x240 

pel frames at 5 frames/s. 
2. It must be causal, that is, it can only use 

information in the past to estimate the 
transformation for the current frame. 

3. When the system cannot find a good esti-
mate, it must signal this to the user. 

4. The user must be able to correct mistakes 
simply. 

 
These criteria were fulfilled as follows: 
1. SAM is used to achieve fast projective 

transform estimation. The program then 
transforms the current frame and pastes it 



directly onto the current “forward” mosaic 
(with no sophisticated stitching mecha-
nism to hide image boundaries). 

2. The system does not attempt global regis-
tration of frames.  Instead the current 
“forward” mosaic is inverse transformed 
to a “backward” mosaic centred on the 
previous frame, and this accumulation of 
all previous frames is used for transform 
estimation of the current frame. 

3. When the system cannot find a good esti-
mate, it displays the current input frame in 
monochrome and does not add it to the 
mosaic. When an input frame yields a reli-
able transform estimate, the program goes 
back to accumulating mosaics. 

4. The system is self-correcting when the 
user revisits areas of error. New frames 
simply overwrite the erroneous part of the 
mosaic. 
 

The real-time mosaicing program is described 
in more detail in [11]. 
 
EXPERIMENTS 
 
I show representative examples of the opera-
tion of the mosaicing program incorporating 
SAM. The mesh spacing in all cases was 1 in 
16. Many things can be done to improve the 
appearance of a mosaic, even after accurate 
estimation of the projective transform and cor-
rection for radial distortion. These include: 
• Only using the central parts of each image, 

or weighting the central parts more heav-
ily than the peripheries [1]. 

• Local adjustments to compensate for small 
parallax and radial distortions [12]. 

• Joining images in the mosaic along paths 
of least difference [7]. 

Any of these could be applied to re-stitch the 
images in post-processing, but none are used in 
the real-time program, and none are applied to 
the results shown in figures here. 
 
Figure 1 shows every fifth frame from a web-
cam video sequence. Figure 2 shows an inter-
mediate “backward” mosaic as displayed to the 
user during the capture of the sequence and 
figure 3 gives the final mosaic. Figure 4 shows 
frames from a sequence with a moving person 
and figure 5 the mosaic constructed from it 
with the person removed from all but his last 
position. Figure 6 is a mosaic derived from a 
video where the camera was moved freely in 
front of a plane.  
 
Figure 7 is a real-time mosaic constructed 
from a camcorder sequence used by Davis [7]. 
This is a difficult sequence because the focal 

length and gain vary. The reader is invited to 
compare the SAM result in figure 7 with the 
pairwise Davis algorithm [13]. Davis’s final 
result, achieved with global registration and 
least difference path stitching illustrates what 
may be achieved with post-processing [14]. 
Videos of the sequences associated with fig-
ures 1 to 6 and others are available online [15].  
 
A series of experiments conducted with Li-Te 
Cheng compared the accuracy, robustness and 
speed of SAM against several alternatives. 
Only one of these was a full projective trans-
form estimator [2], and in these comparisons 
SAM proved to be more reliable and thirty 
times faster than the alternative. Quantitative 
comparisons against other projective transform 
estimators are in progress. 
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Fig 1: Frames from an example input webcam 
video including revisits. 
 
 
 
 
 
 
 
 
 
 
 
Fig 2: Early intermediate mosaic from the 
video in figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3: Final mosaic from the frames in fig 1. 
 
 
 
 
 
Fig 4: Frames from an example input webcam 
video including a moving person. 

 
 
 
 
 
 
 
 
Fig 5: Final mosaic from the frames in fig 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6: Mosaic generated by free movement of 
the camera over a plane. The image is pre-
served at higher resolution than shown in this 
particular view, where the mosaic is centred on 
the final video frame, viewing Faraday’s head 
from an upward-tilted camera. After mo-
saicing, the plane can be reoriented as desired. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 7: Mosaic generated from Davis’ “mem-
chu” sequence. The streaks in the bottom right 
occur because variation in camera gain is not 
compensated for. However, use of SAM on 
successive frames of a 150-frame sequence has 
allowed reasonable recovery of image geome-
try in a single pass with no global correction. 
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