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Abstract 

 

The LivePaper system augments ordinary pieces of paper with projected information. Pages, cards and books are 

placed on an instrumented tabletop to activate their enhancement. To the user, it appears as if the paper gains new 

visual and auditory features.  Projected annotations track the orientation and location of pages as the user moves 

them on the desktop.  A piece of paper that is removed, but then returned to the desk, regains the same features that 

it previously exhibited. The LivePaper system accomplishes this by using features extracted from written material 

on the page, not from glyphs or other artificial marks. 

 

The paper describes both the system as a whole, and a number of sample applications we have developed to 

illustrate the feasibility of the LivePaper system.  These applications include an architectural visualization tool, 

which projects a 3D hidden-line rendering of walls onto a page. The user may rotate and move the page to view the 

rendering from different angles.  Another application is an audio player, which begins playing when a page (such as 

a business card) is laid on the desk.  The user may control playback with his or her finger via projected buttons.  

Other applications include page-sharing, remote collaboration, and World Wide Web page viewing. From the user's 

perspective, all of these applications are attributes of the particular page, not features of the tabletop. 

 



Particular attention is given to the design of interaction: LivePaper is object-oriented, because the individual sheets 

are treated as computational units, but it also provides functions that involve several objects. The design principles 

applied to handle the different kinds of functionality are explained and illustrated in the LivePaper system, but are 

also proposed for wider use in augmented reality. 
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1. Introduction 

 

The LivePaper system is a video-augmented environment that enhances ordinary pieces of paper with projected 

information. Figure 1 shows the system in use, with various applications bound to paper cards and pages. Later 

sections outline the methods by which the system analyses images of paper on a table top, interprets them, adds 

functionality to them, and provides novel applications, but our primary concern is to show how LivePaper embodies 

user-interface principles that we believe are widely applicable in augmented reality. Briefly these are the 

identification of functionality as object-oriented, multi-object or environmental; the division of object-oriented 

functionality into literal and magical parts with different implications for information presentation and interaction; 

the provision of replicated control for multi-object functionality; and the creation of virtual environment objects. 

Section 2 explains how these terms and principles arise from a consideration of ubiquitous computing, augmented 

reality on wearable computers, and video-augmented environments. Section 3 describes how they are realized in the 

LivePaper system. Section 4 gives a brief technical overview and Section 5 summarizes the implications of 

LivePaper and the proposed user interface principles. 

 

2. Interacting with Augmented Objects and Environments 

 

2.1 Classes of augmentation functionality in ubiquitous computing, wearable augmented reality and video 

augmentation 

 

The vision of ubiquitous computing (ubicomp) [28] is to enhance everyday objects such as pens, paper, mugs, chairs 

and walls, with computational capabilities. People interact with embedded processors by handling the objects as they 

normally do, and new functionality is encountered as augmentation of conventional functionality. Some simple 

manifestations of ubicomp, such as self-monitoring coffee cups (which squawk when in need of cleaning) and 

responsive drapes (that open and close subject to both lighting change and voice command), augment single 

independent objects. But the real promise of ubiquitous computing is networked objects that exchange information 

to provide an integrated intelligent environment. This presents a user-interface challenge. So long as people interact 

with particular objects, ubicomp offers a natural, object-oriented, user interface. This, indeed, is one of its 

attractions. But when communicating objects generate information that transcends particularity, it is difficult to say 



how and where that information should be presented to the user. Similarly, how should the user control functions 

that integrate capabilities from several objects?  

 

In wearable computing [23], interaction is usually subject-centric. Although a typical general-purpose wearable 

provides the user with simultaneous access to dynamic computed information and to the real world – for example, 

by presenting the first on a see-through head-mounted display – there is often no visual or conceptual connection 

between the two domains. Email and web browsing, for example, run on a wearable with no reference to the user’s 

real environment. Reinforcing the subjective orientation, displayed information moves with the user’s head, and 

input is by a special-purpose hand-held device. So the real and computed worlds experienced by the user are 

superimposed but isolated. Researchers in wearable computing have long been interested in bridging the two worlds 

(e.g. [6]). Their augmented-reality applications overlay computed visual information on a real scene, generated by a 

computer that is aware of the environment and the view the user has of it. Now it becomes possible to envisage 

object-oriented interaction with a wearable. If true augmented reality is achieved – with overlays sticking to surfaces 

in the real scene, even as they are viewed dynamically from different viewpoints – then object-centric computation 

and interaction can be simulated. A user may grab an object, manipulate it, and the overlays will not only follow, but 

also change in line with the user’s actions. Such real-time, registered, augmentation would give a very strong 

illusion that the object itself is the computational unit. We have conducted some investigations into such object-

oriented interaction for wearables [4], though the practical difficulties of registration have limited the applications. 

Indeed, the problem of maintaining lock between overlays and reality is a very hard one [3] especially if the user is 

allowed to move freely. When and where registration is good enough to support robust augmented reality, wearable 

computing can simulate ubiquitous computing. It therefore presents a new version of the user interface problem 

already mentioned. If we can augment objects so that manipulating them individually provides a natural focus for 

computer-user communication, how do we deal with functions that transcend individual objects? 

 

In this paper, we concentrate on a different kind of augmented reality, a video-augmented environment (VAE), 

where one or more data projectors augment a scene that is monitored by one or more video cameras. VAEs may be 

thought of as enhancing a fixed workspace, but in our research we have concentrated on maintaining a strong 

association between augmentations and individual objects. We augment paper, which, in everyday use, is scattered 

and stacked on untidy surfaces. So object-orientation is natural: we have to work at the level of the sheet, card or 

book, not at the level of the augmentation surface [17]. Yet we encounter the same problem as in ubicomp and 

wearables – some functionality is particular to individual objects, some functionality is integrative. How do we 

provide a user interface that is both object-oriented and capable of multi-object and environmental interaction? 

Further, how do we structure the object-oriented augmentations to give the right cues to users about what can be 

done? 

 



For all three cases we have discussed – real objects with embedded processors, wearable augmented reality 

simulating enhanced objects, and VAEs projecting augmentations onto objects – we identify the following loci of 

augmentation: 

 

• Object-oriented. When functionality is strongly associated with a particular object, even if there are many 

objects with the same functionality, we say it is object-oriented. For example, the ability to share a sheet of 

paper by transmitting its contents to a remote location and having remote annotations projected onto it, is 

object-oriented. Other sheets may or may not be similarly shared. There is no necessary linkage between 

objects offering the common functionality. Clearly it makes sense to associate the user interface for this 

type of functionality with the object in question. 

• Multi-object. Functionality that involves interaction between a plurality of objects is multi-object. A special 

case of this is when only one kind of augmentation can apply at once. For example, in the LivePaper 

system, audio augmentation is via a single speaker so it is not desirable to augment more than one piece of 

paper with audio at a time. There is contention between objects that are attempting simultaneously audio 

augmentation, and implicit communication between them is required to resolve which one speaks. Multi-

object functionality applies generally to information exchange between collaborating objects in an 

augmented environment. 

• Environmental. Functionality that applies to the whole of the augmented area is called environmental. In 

the case of ubicomp, environment denotes integrative functionality that applies to a whole room, while on a 

wearable, any operation that is context sensitive, but not associated with particular objects, would be 

environmental.  

 

Because projected information and displays on wearables do not always enhance real objects or the real environment 

and yet are still sometimes called augmented reality, we add the term Unbound to denote functionality that has no 

physical anchor and Subject-centric to denote functionality that is private to the wearer of a computer. 

 

2.2 Literal and Magical Subclasses of Object-oriented Functionality 

 

Object-oriented functionality is tightly bound to particular objects, and we have stated the implication that user 

interaction should likewise be object-oriented. A characteristic property of individual objects is their physical extent. 

This not only constrains the arrangement of visible enhancements, it also provides a very strong organizational 

framework for the user interface. Here we explain how we recognize this framework, and use it in LivePaper, based 

on insights first suggested by Smith [21]. 

 

The idea that interfaces embody a tension between the literal and the magical was first suggested and studied in the 

context of the Alternate Reality Kit. Literal features exploit a metaphor such as direct manipulation to define the 

modes of use of an object, and they are therefore easy to learn. Magical features, like pop-up menus, have little to do 



with the way real-life objects work, so are harder to learn but provide the user with more power. Smith plotted 

functionality against learning time for a variety of interactors in a conventional graphical user interface, showing the 

opposing influences of literalism and magic. 

 

We argue that in a mixed reality the physical objects themselves provide anchors for literalism. Augmentations that 

that are bound to these anchors are interpreted literally. Other augmentations, associated with, but not bound to, the 

physical objects, can provide magical features of the interface. To explain this more clearly, consider the types of 

operation a user could do with Live Paper on an enhanced table top: 

 

The user can place paper at will, position it, stack it, and even fold it or crush it (though our implementation does not 

yet handle these later cases). The user can make gestures, either over the paper or beside it. The user can make 

marks (for example, with ink), either on the paper or beside it. We note that paper is naturally manipulated by 

placing it and marking it; people do not normally gesture over paper. Conversely, people do not make markings 

adjacent to paper on a desktop  --- such annotations add nothing to the paper once it is moved; they stay behind as 

dereferenced graffiti on the desk. Therefore, the paper itself, its markings and the augmentations projected onto it, 

are seen as comprising a physical, tangible unit. The place for magic is not on this literal field, but outside it. 

Directly adjacent to a sheet of paper is ideal --- users do not do literal interaction there, but the spatial association is 

obvious. 

 

There are important design consequences of this reasoning. All live paper applications involve literal interaction on 

the paper. Thus, annotations of printed information are registered to the page and overlay it. As the page is moved, 

these annotations translate and rotate with it, so they remain locked in place. Markings that the user makes on the 

paper may result in responses by the system, but these will be changes in the representation of the object, not control 

responses. For example, writing on the paper may cause the vectorization of markings for transmission to a remote 

graphical shared space, but it will not cause a magical change in functionality. By contrast, each live page has a 

transport which is projected adjacent to the page, which tracks its position but is always oriented vertically. The 

spatial association of the transport and the paper is clear, but the fixed format and orientation signals to the user that 

the transport is not part of the literalism of the LivePaper interface. On the transport we provide controls, over which 

the user gestures (see below). The examples of applications given later further illustrate the clear separation of user 

interface operations. Perhaps the most compelling is the architectural application of section 3.3, where the 

augmentations on the paper change as the page is turned, but in accordance with a literal/physical interpretation of 

what is on the paper. 

 

The separation of literal and magical functionality that we propose and implement in the LivePaper system is a 

direct consequence of treating pieces of augmented paper as units of interaction on a surface that is itself augmented. 

Earlier systems have freely mixed magical functionality with literalism. For example the Brightboard ([22], see also 

section 3.1) encourages the objects of interest --- boards full of information --- to be impregnated with magical 



symbols. We suggest that our clear separation of literal objects and magical adjuncts gives a much clearer model of 

what can be done in a mixed reality. The same idea can be extended, for example, to a wearable augmented reality 

system, where the detection of known objects in the scene allows for their literal augmentation, with graphics that 

lock into place even as the user moves in space. At the same time they can be magically augmented with controls 

that may move with the user, rather than with the object. 

 

2.3 Magical Interaction for LivePaper 

 

Given the separation between literal and magical interaction, the LivePaper system must recognize changes in 

markings on paper, and hand gestures adjacent to paper. Later sections of this article outline what is involved in 

tracking marking changes, and in detecting the user's finger against paper and the table top. Here we briefly describe 

our design of the magical interaction mechanism. 

 

The visual anchor for the magical interaction is the vertical Transparency Portal, or transport, at the right side of 

each page (see Figure 2 and later examples). Each transport has a series of tabs, where each tab represents a 

transparency. A transparency is a bundle of functionality that can be added to the page by its original creator or the 

user. As more transparencies are added to the page, its transport grows larger to accommodate all of the tabs.  

 

By pointing at a tab, the user can view the particular user interface for that transparency, typically a stacked set of 

control buttons that the user can select. These selection features are activated through hand gestures --- pointing at a 

tab or button with a finger will display a confirm button. If the user then confirms the selection by pointing at it, the 

appropriate action will occur. 

 

The transport user interface is therefore a kind of cascading pop-up menu. However, because the user has no way of 

indicating a button press (we do not, for example, detect tapping of the table top), the final branch of the menu is a 

confirm button. Control is therefore purely by continuous 2D motion. 

 

The transport automatically stacks transparency tabs in a column on the tabletop. This magical organization of the 

access to functionality contrasts with the way transparencies overlay their literal functionality on the paper itself: 

they superimpose, just like transparent sheets laid on top of the paper (hence the name). There is the potential for 

confusion between overlaid transparencies, but we have never encountered this in practice. 

 

2.4 Integrating the Interface 

 

The separation into literal and magical interface components can be extended to multi-object functionality. Clearly 

the control of such functionality is magical, but integrative applications may yield literal information, which has to 



be presented somewhere. For example, consider an application that looks at two open diaries and projects 

information about timeslots that are open on both. 

 

We have implemented control of multi-object functionality through replicated tabs. Objects that interact have 

characteristic communication tabs in their transports. Manipulation of the controls of one object can result in 

simultaneous projection of menus on both objects. Figure 3 shows two documents that are linked for collaborative 

drawing or for unblocked brainstorming [12]. (The projections are shown in reverse video for clarity.) Obviously 

these two documents could be located anywhere within the augmented area. They could also be on remote systems. 

Because the control of integrative functionality is replicated on both transports, the functionality is operated 

identically whether the sharing is local or remote. 

 

We implemented two kinds of interface for environmental functionality. The first, designating an area of the 

augmented surface to global functions, corresponds to the introduction of a virtual environmental control object. 

This gives a clear spatial cue for the organization of control, but it takes up real estate. The alternative is massive 

replication of controls through all objects’ transports. This alternative has been used for our one global application – 

debugging, illustrated in figure 4. 

 

3. The LivePaper Implementation 

3.1 Previous Work on Video Augmented Environments 

 

Prior work in video augmentation has generally focused on creating a workspace with enhanced abilities rather than 

simulating embedded intelligence in the objects. Several projects since the early 1990's have used video and other 

sensors, coupled with data projectors, to create a Video Augmented Environment (VAE) based on a desktop model. 

 

The DigitalDesk [13][29] was a pioneering attempt to add general computer interactivity to an ordinary desktop, and 

has become an inspiration for many other video augmented desk systems. The system receives information from two 

cameras mounted over the desk. Information is displayed on the desk via a data projector. Direct successors of the 

DigitalDesk include the LightWorks project, a video-scanning system for printed documents [2], Origami  [19] and 

the EnhancedDesk [11]. Both Origami and the EnhancedDesk locate and identify pages using fiducials.  

 

The metaDESK [25] is an investigation into using physical objects to interact with a computer display. In addition to 

the back-projected display desk, the metaDESK also includes two movable ‘lenses’ that display information about 

the underlying area. The metaDESK uses buildings as physical icons, or phicons to rotate and set the scale of maps. 

The mediaBlocks project [26] uses blocks with some digital storage capabilities to store handles to media such as 

video, pictures, and audio. These blocks can be inserted into browser devices to view the data, or in some cases 

dropped into a printer reader to produce a printout. Illuminating Light [27] focuses on teaching and simulating 



holography. Students manipulate physical objects that represent common holography devices. A computer analyzes 

the scene for coloured dots acting as fiducials. These identify the type and orientation of each object. The system 

then projects the path of the laser beam, which interacts appropriately with the objects. Although the shape of each 

object suggests a function, the object itself has no intrinsic utility outside of the zone of augmentation.  

 

The BrightBoard [22] uses a video camera to add digital recording and some interactivity to a standard whiteboard. 

A computer watches the board via a video camera, and waits for the person to write special symbols. Areas of the 

board can be saved, printed, faxed, or emailed; the commands are written directly on the whiteboard. The 

BrightBoard generates a sound to indicate processing of a command. Each command is a pre-programmed sequence 

of letters and numbers inside a box. To associate a command with a particular area, the user denotes the region with 

corner symbols. 

 

The ZombieBoard [2] [20] is a whiteboard scanner. The system captures high-resolution images of the whiteboard, 

analyzes gestures, and provides a Diagrammatic User Interface (DUI). To obtain high-resolution images, the 

ZombieBoard mosaics low-resolutions images captured from a pan/tilt NTSC video camera. The ZombieBoard 

analyzes gestures that a user performs with a ‘phicon’, or physical icon. The phicon has a distinct colour that can be 

easily found in a video image. The system recognizes a set of six gestures: start, cut, print, save, clear, and quit. 

 

There have been several research projects that look at augmenting the capabilities of writing instruments such as 

pens, markers, and highlighters. Additionally, novel methods of organizing and registering overlay augmentations 

have been applied to various common objects. Important influences on LivePaper were references [1],[15],[24].  

3.2 LivePaper System Overview 

 

The LivePaper VAE has been implemented in a practical tabletop system. The user sits in front of the table. A 

camera positioned overhead has a generally unobstructed view of the table top. A computer digitizes the video 

signal and performs image analysis to determine the location, size, and content of the pages. It then feeds output to a 

data projector to augment the paper. 

 

The desk is 30”x60” (1518mm x 755mm) with a dark wood finish. The surface has not been altered, and is thus 

pitted with numerous scratches and is quite shiny.  The computer is a standard personal computer with an Intel 

Pentium III microprocessor operating at 933MHz and Microsoft Windows 98 operating system. It has a video/audio 

capture card (Winnov Videum AV), an Ethernet network card, a second video display card, and two serial ports for 

control of the camera and projector. The Canon VC-C3 Communication Camera is connected to the computer via a 

composite video cable and an RS-232 cable for controlling camera features such as zoom, pan, tilt, gain, and focus. 

The VC-C3 can tilt up a maximum of 25° and down 30°; it can pan 90° both left and right and has maximum 10x 

optical zoom. The camera is mounted above the desktop on a subplate attached at an angle of 25° to a vertical steel 



plate. The main plate can be repositioned along a horizontal steel beam. See Figure 5 for a diagram of the mounting, 

and a photograph of the setup. The plate is aligned over the back edge of the desk, at a height of 170 cm. This 

permits the camera to tilt such that the back edge of the desk is always within the field of view. The data projector is 

a Telex P600 LCD projector with display resolution 1024 x 768 and a brightness rating of 750 ANSI lumens, which 

is bright enough for the user to see projected annotations on the desktop in normal office lighting.  

 

The Live Paper software system consists of three types of support modules: image processing, including finding and 

identifying paper, motion detection, and finger tracking; state handling, including monitoring the positions, contents 

and associated transparencies of all pages known to the system; and user interface. The software also provides an 

interface for transparency modules. Transparencies are akin to LivePaper applications, and can be added to the 

system easily, via a clean API. LivePaper consists of 20,000 lines of purpose-written C++ code and is implemented 

on top of custom libraries for support of multimedia communication, developed by L-T Cheng at Memorial 

University. End-to-end latency (from camera acquisition to projected output) is on the order of 250ms to 500ms, 

depending on the number of active applications. 

 

3.3 Applications  

 

LivePaper applications are implemented in transparencies – bundles of functionality that can be applied to pages 

that the system has seen. In some cases a transparency will require access to stored data to associate with a page (for 

example, a CAD model to associate with an architectural plan). At present this information must be entered through 

a keyboard. All transparencies have access to information such as the orientation, position, and printed content of 

the page, and thus can react to any changes that the user makes to these properties. Another feature of the Live Paper 

system is a communication channel that can be established between transparencies, even if they belong to different 

pages. This allows the transparencies to exchange information, such as the current page content. The local page 

sharing transparency uses this feature. 

 

We describe three transparencies: a music player, an architectural renderer, and a remote collaboration tool. In 

addition, the Live Paper system has transparencies for sharing pages, browsing the web, and debugging.  

 

Music 

 

The Music Player is a transparency that plays a stored list of music. It reads a script file when created, which it then 

uses to determine the order and location of music files. The user may select the music tab icon to display or hide a 

strip of buttons (see fig 6), which allow the user to play, pause, stop, skip, and display a menu of songs. 

 



By default, the transparency begins playing music when its associated page is first laid on the desktop. The play 

button automatically updates as the playing status changes; for example, if a song is playing, then the button 

displays a pause icon. Although no printed overlays are generated by the transparency, the transport button stack 

does move as the paper is moved. 

Architecture 

 

The Architecture Renderer transparency displays a perspective-corrected three-dimensional extrusion of a floor plan. 

The rendering appears to be attached to the page, and thus will rotate and move with the page. The transparency 

assumes that the user’s viewpoint is approximately 30 cm in front of, and 80 cm above, the desktop. A three 

dimensional house, for example, appears to sit on the desk, and the perspective will change appropriately as the page 

is moved (see fig 7). As with the music transparency, the user may select the architectural renderer’s tab icon on the 

transport to show or hide a stack of buttons. There are three buttons, which allow the user to show or hide the 

rendering, to show the rendering as a stereo view (requiring a pair of red/blue glasses) or in a monocular view, and 

to display the rendering in wireframe mode or with hidden lines removed.  

Collaboration 

 

The Remote Collaborator transparency establishes a link with the networking facilities of Live Paper, and shares the 

image of the page. Users of conventional personal computers located at remote sites can connect to the Live Paper 

system and view the pages that have this transparency. While viewing a page, the remote user can use a mouse to 

add annotations. These appear on both the remote user’s screen and on the page on the Live Paper desk (see fig 8.). 

The tab icon of the Remote Collaborator changes from a dark red arrowhead to a bright green, animated arrowhead 

when a remote user connects to the system. This is a visual clue to the local user that a remote user is currently able 

to view the page. The annotations are locked onto the page in a similar way as the Architectural Renderer 

transparency. As the user moves the page on the desk, the annotations track the page (fig 9). 

 

4 Technologies  

In order to create an augmented desk environment that successfully simulates paper with embedded computing 

capabilities, we have investigated a number of issues. In this section, we outline some of the research we have done 

in four key areas. 

 

4.1 Page finding 

 

In a desktop environment, the user can easily vary the location of pages both during the process of writing and when 

finished. Before the system can process a page, it must successfully locate that page and extract a perspective 

corrected image of the marks. The current implementation uses four steps to locate non-overlapping pages: 



segmentation, edge finding, edge extraction, and page finding. Figure 10 shows an example image of the desktop as 

it passes through each step. When overlap is detected, a further four steps are triggered (fig 11) to estimate the 

locations of hidden corners. 

 

Implementation 

 

Segmentation is based on grey-level thresholding. In the simple case of one page on a desktop, the grey-level 

histogram for the image is well separated into two regions. However, as more objects and pages are added to the 

desk, the separation in the histogram is reduced, and multiple peaks can form. A fixed threshold is not used because 

there are variations in brightness due to lighting and camera properties. 

 

We use a variation on the method developed by Otsu to automatically select a threshold for picture segmentation. 

The Otsu thresholding method [14] uses discriminant analysis to divide the histogram into two or more classes. The 

thresholds chosen are optimal from the viewpoint of discriminant analysis. We have found that searching for the 

best two-class division of the histogram does not always return an appropriate threshold, especially when there are 

large amounts of clutter. However, the three-class division is quite robust, and a simple heuristic is used to 

determine which of the two thresholds is best for separating the pages from the desk regions. Boundaries are found 

by examining the neighbours of each pel classified as belonging to a page. These boundaries are then extracted and 

stored in a chain-code using a contour-following algorithm. The algorithm uses the previous direction to determine 

the search order for neighbouring pels. Extremely short contours, and those wholly within other contours, are 

immediately eliminated. The boundary chain-codes are examined to find corners and straight line segments [8]. This 

method is described in more detail in [16]. 

 

When overlap is detected, the system feeds the information already derived into a geometric inference module. This 

looks for candidate hidden corners between lines that do not meet. Suitable pairings are organized into a graph that 

is progressively pruned to estimate the most likely configuration of corners. The method is described in more detail 

in [17]. 

 

4.2 Page Identification 

 

The system must rapidly determine if a sheet of paper on the desk has already been analyzed and stored. It is a waste 

of both computer and network resources to fully reprocess a stored sheet. The best technique to identify a sheet is to 

use its current location and the location of similar sheets or sheet elements in the newly captured frame. For small 

time differences, it is valid to map sheet elements based on their locations and orientations. However, if the system 

does lose track of a sheet, then an alternate method of identification is necessary. The augmented desk stores images 

of all processed sheets (see Figure 12 for sample pages), and uses a Hausdorff distance measure to compare a new 

sheet of paper image to the stored images. 



 

Implementation 

 

To identify a page, the system first locates the page, and then extracts the image area using a bilinear texture-

mapping algorithm. The page image is segmented into writing and non-writing areas by application of the Moving 

Averages thresholding algorithm [29]. The algorithm was designed for scanned document images of black text on a 

white page, and works well even in the presence of non-uniform lighting. The system then uses the Hausdorff 

distance measure to compare this binary image with a database of stored images. The Hausdorff distance is a 

measure of similarity between sets of points, but it does not establish a one-to-one correspondence. A number of 

researchers have investigated its use for image similarity [5][9][10]. For binary page images, the mark pels are used 

to generate the point sets. The smallest distance indicates the best match – a cut-off distance is used to decide 

whether the system has already stored the page or not. Further details of our procedure may be found in [16]. 

By using the Hausdorff distance on the two-level page image directly, it is possible to identify each page rapidly 

without requiring glyph codes, explicit identification tags [19], or large matrix codes [11]. In experiments on a set of 

171 pages, we realized an accuracy of page identification of 93% using an image resolution of 5 dpi. By zooming 

the camera head to obtain a resolution of 15 dpi, the accuracy is over 99%. The technique is also fast, even when 

comparing a page with a database of several hundred stored pages. The use of the Hausdorff distance does not 

preclude other identification techniques. 

 

When the page is changed through annotation or other writing (see Section 4.4. below), a new version is stored for 

future matching. 

 

We have not yet conducted a systematic evaluation of page identification performance when parts of a page are 

occluded. But because augmentation provides direct feedback to the user, errors in identification of overlapped 

sheets are immediately evident, and the user can quickly correct the system by moving the page in question so that it 

is on top. 

 

4.3 Finger tracking 

 

The restriction of gestural interaction to transports and their cascading menus simplifies the location and tracking of 

the user’s fingers. The system generates a list of hotspots on the tabletop, according to the location of buttons. These 

locations are transformed to regions in the acquired image. When the user points at a button, their finger is 

illuminated by the projected augmentation. The result is a significant change in the luminance of the imaged button 

area. When the system detects that a significant number of pixels in a hotspot exceed a change threshold, the region 

is triggered. A pointing finger triggers all the hotspot regions it occludes. The one furthest from the user corresponds 

to the fingertip, and is therefore taken as the activated button. This method proves to be robust as well as fast. 

 



4.4 Videowriting 

 

Videowriting is the use of a video camera to extract, in real-time, new writing from a sheet of paper. This capability 

is built into all LivePaper applications so paper can be annotated (and the page image changed) at will. In addition to 

the basic tasks of extracting high-quality writing while ignoring the user’s hand, the resulting mark data must be 

compressed and stored, and transmitted during collaboration sessions. Because the extraction algorithm will likely 

make some mistakes, the system must be capable of deleting falsely extracted marks, both locally and remotely. 

The ideal methodology is one that incorporates various algorithms to robustly detect writing on different surfaces, at 

non-ideal angles, and with any writing instrument. Currently, several basic assumptions are made to reduce the 

complexity. The writing surface must be a sheet of white paper. The writing instrument is a dark ink marker, with a 

pen tip sufficiently wide to be detected at the captured resolution. With these restrictions, we have developed a 

methodology which reliably extracts writing in real-time. Details are provided in [18]. 

 

One practical consideration that will always be present is the occlusion of newly written material by the user’s hand. 

This might require the user to be mindful of periodically removing his or her hand from the page, so that the system 

can update the list of marks. A VAE desktop with projective capabilities could prompt the user when necessary. 

Implementation 

 

To incrementally extract marks, three steps are used. The captured image of the page is adaptively thresholded to 

separate the marks from any other clutter on the page. The thresholding process does misclassify some areas of the 

user’s hand and pen as writing, and so the system classifies a mark based on its temporal permanence. Finally, the 

difference between previously extracted marks and those in the current frame is used to find new marks. 

Videowriting uses an adaptive grey-level thresholding algorithm designed similar to Moving Averages [29] which 

visits each pel on horizontal and vertical passes. For each pass, the algorithm averages the current pel with l pels 

before and after it. If the current pel is t levels darker than the average in either pass, then it is considered to be a 

mark pel. 

 

Permanence of a mark is currently established by ANDing several consecutive thresholded images. Pels that were 

set as mark pels repeatedly are considered permanent mark pels. To extract marks incrementally, the system 

compares the image generated by adaptive thresholding with an image created from marks stored in the database. 

New marks are extracted, and then stored as binary arrays, along with additional information such as its coordinates 

and identification number. Updates occur when there is no motion for a short period of time, which indicates that the 

user has remove his or her hand from the page. Any pel that has been mistakenly classified as a mark pel is deleted 

from the appropriate mark. Each mark is permitted to have a few false pels, but if a significant number of pels are 

deleted, the entire mark is purged. 

 



5 Conclusion 

 

Through design of the LivePaper system, we have developed guidelines for user-interface organization in 

augmented reality systems. These are summarized: 

 

• Divide functionality into that which is associated with particular objects, that which involves cooperation 

between objects, and that which pertains to the whole environment. 

• Determine the literal part of object-oriented function, being the augmentation that corresponds directly to 

the physical form and conventional use of the object. 

• Provide user access to literal functionality by direct object manipulation, and display of literal information 

by registered graphical overlay on the object. 

• The remaining object-oriented functionality is its magical component, being the augmentation that does not 

correspond to the conventions for the object. 

• Display magical functionality so that its association with the object is clear, but so that it forms a detached 

annotation rather than an overlay. 

• Allow user manipulation of magical controls in a way that has nothing to do with the literal, conventional 

use of the associated object. 

• Where objects have multiple augmented functions, superimpose the literal overlays on the object, but 

spatially organize the magical functionality so that the alternatives are clear. 

• Support cooperation between objects by displaying appropriate literal information overlaid on each and by 

duplicating the magical part of the interface. Other magical cues, such as displaying links overlaid between 

objects and using flashing tabs, may be used to highlight the integration of several objects’ functionality. 

• Support environmental functionality with a virtual environmental control object which is simply a reserved 

location in the environment, or by replication of magical tabs on all objects. Environmental functionality 

should not be embedded in the literal augmentation of objects. 

 

These rules have been embodied in LivePaper, and we offer them as possible guidelines for design of other 

augmented and mixed reality systems. 
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Figure Captions 

 

 

Figure 1. The LivePaper System in Use 

 

Figure 2. LivePaper Components on the Tabletop. 

 

Figure 3. Collaborative Drawing and Brainstorming application 

 

Figure 4. Debugging (also showing the architectural application) 

 

Figure 5 (a) Mounting Diagram (b) Photograph of Mounted Projector and Camera. The projector is attached to a 

vertical plate hanging from a reinforced horizontal bar. The pan-tilt-zoom camera is adjacent, attached to an angled 

plate, ensuring the full tilt range can be exploited. 

 

Figure 6 Music Transparency 

 

Figure 7 Architecture Transparency 

 

Figure 8 Remote Collaboration with Traditional Personal Computer User 

 

Figure 9 Example of how displayed annotations appear to be locked to the page. 

 

Figure 10 Procedure for Detecting Sheets 

 

Figure 11 Procedure for dealing with overlapped sheets 

 

Figure 12 Examples of extracted pages 
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Figure 3. Collaborative Drawing and Brainstorming application 

 

 

 

 

 
 

 

Figure 4. Debugging (also showing the architectural application) 

 

 



 

 

 

 

     

 

Figure 5 (a) Mounting Diagram (b) Photograph of Mounted Projector and Camera. The projector is attached to a 

vertical plate hanging from a reinforced horizontal bar. The pan-tilt-zoom camera is adjacent, attached to an angled 

plate, ensuring the full tilt range can be exploited. 
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Figure 7 Architecture Transparency 

 

 

 

 

 

 

 

 

  

  

  

Figure 8 Remote Collaboration with Traditional Personal Computer User 

  

 

 



 

 

 

 

 

 

Figure 9 Example of how displayed annotations appear to be locked to the page. 
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Figure 10 Procedure for Detecting Sheets 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Procedure for dealing with overlapped sheets 

 

 

 

 

 
 

Figure 12 Examples of extracted pages 
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