
1. Introduction 
A number of vision tasks rely on the fast and robust 
recognition of distinctive markers or fiducials in a 
scene. Our interest is in augmented reality, where 
fiducial labels can be used to identify objects, register 
overlays, and calibrate camera location, but tasks in 
robot vision, automated assembly and virtual reality 
may also employ fiducials. In all cases the requirement 
is that fiducials are correctly recognised and located, 
while naturally occurring scene structure is not falsely 
interpreted as fiducials. Some applications are more 
demanding than others: there can be requirements for 
recognition over a range of scales, in varying lighting 
conditions, at arbitrary angles and with partial 
occlusion. At the same time, some types of fiducial are 
more flexible than others, affording more functionality 
-for example in the number of different markers that 
may be recognized- or more durability- for example in 
the kinds of distortions a marker can undergo and still 
be recognized. 
Fiducials can be located on the basis of properties like 
colour, shape and pattern. Their design is bound up 
with the design of detection mechanisms, and so in 
seeking to optimize a particular approach to fiducial 
detection we must consider both aspects. 
In this paper we consider the detection of fiducials in 
images by their topological properties. Our fiducials 
are two-level (black and white) patterns. We detect 
them by adaptive image thresholding, followed by 
region adjacency analysis. This means that neither 
colour nor geometry are inherent properties. In Section 
2 we describe the benefits of this approach, and in 
Section 3 outline our algorithms, identifying the 
parameters that need to be optimized. We have 
conducted extensive simulations to evaluate different 

topological structure and detection algorithm 
parameters and these are reported in Sections 4 and 5. 
We briefly report a working application that uses our 
fiducials and detection method in Section 6. 
 2. Benefits of the Topological approach 
Most systems proposed for real-time image fiducial 
tracking are based on geometrical features or colour 
recognition1, 2, 3, 4, 5. Approaches based on region 
adjacency graphs and graphs in general have been 
traditionally proposed for (off-line) batch applications, 
as they generally suffer from the computational 
complexity of the sub graph isomorphism problem6. 
This consists in finding a mapping between all the 
nodes of a target graph -representing the object that is 
searched- and a subset of a larger graph -representing 
the scene, i.e. the search space. The sub graph 
isomorphism is an NP complete problem, and hence its 
complexity is exponential in the size of the two graphs. 
 A notable exception seems to be represented by the 
work of Messmer and Burke7, where subgraph 
isomorphism is used for Real-Time fiducial 
recognition. 
Another problem for a topological approach arises 
when the fiducials are occluded. In these circumstances 
the occluding object’s regions merge with those of the 
fiducial, strongly modifying its topological structure.  
On the other hand, a topological approach leads to 
independence from fiducial geometry and hence to 
tolerance to deformation, as long as topology is 
preserved. This class of deformations covers a larger 
range than those allowed for algorithms based on 
geometrical features – such as warping. Consequently, 
it is possible to sketch the fiducials by 
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Abstract 
We report a topological approach to fiducial recognition for real-time applications. 
Independence from geometry makes the system tolerant to severe distortion, and allows 
encoding of extra information. The method is based on region adjacency trees. After 
describing the mathematical foundations, we present a set of simulations to evaluate the 
algorithm and optimise the fiducial design. 
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hand, or to attach them to deformable objects (such as 
clothes). 

Moreover, as the geometry of the fiducials is 
transparent to the recognition algorithm, it can be used 
to encode extra information. Fiducial alphabets or 
"families" can be defined so that all the symbols share 
the same topological structure, but have different 
geometries, (as illustrated in Figure 1). In this way, all 
the symbols from the alphabet will be recognised and 
located in a first pass by the recognition algorithm. 
Subsequently, simpler image processing routines can be 
applied locally to distinguish among different symbols. 

The system that we propose benefits from the 
topological approach and at the same time simplifies 
the complexity of the search by (1) using a binary 
threshold to reduce the image to two levels, and (2) 
introducing constraints on the region adjacency 
structure of the fiducials. This makes our algorithm 
suitable for real-time applications.  

Use of two level (black and white) symbols affords the 
maximum contrast, and therefore resilience to 
illumination variation across the fiducial. 

A controlled amount of tolerance can also be 
introduced in the recognition process. This increases 
the robustness of the system when the topological 
structure of the fiducials is modified, for example 
because of spatial illumination changes or even 
moderate occlusion. To be effective, tolerance has to be 
defined in conjunction with the symbols’ design. In 
general a trade-off will be required between 
tolerance/robustness and the amount of extra 

information encoded in the symbols. Details are given 
in the following sections. 

 3. Description of the Algorithms 

3.1 Adaptive Thresholding 

We have evaluated existing adaptive two-level 
thresholding algorithms due to Bernsen [7] and Niblack 
[8]. We report here a new approach to adaptive 
thresholding that outperforms both for our application. 

In common with other adaptive algorithms we consider 
a local window on the input image and calculate a 
threshold for that window. Our approach is based on 
the idea that image peaks, ridges and the shoulders of 
edges should, if possible, be thresholded to white, while 
image pits, valleys and the feet of edges should, if 
possible, be thresholded to black. Within any window it 
will be impossible to separate all of the first type of 
feature from all of the second with a single luminance 
threshold, but we aim to find the minimum-
classification-error threshold for these points. The 
isotropic laplacian [9] of the original image has high 
magnitude at points of high luminance surface 
curvature. These occur at peaks, along ridges, and along 
the shoulders of edges for high positive values of the 
laplacian, and at pits, along valleys, and along the feet 
of edges for high-magnitude negative values. We 
therefore threshold the laplacian at a positive level and 
sample the original image at all super-threshold points.  

Figure 1. (a) (top) Different fiducial markers with 
the same topological structure. (b) (bottom) Ob-
jects labelled with fiducial symbols  

Figure 2. Example image before and after thresholding 

Figure 3. Fiducials recognized  by the algorithm; note 
warping, scale variation and recognition of different 
topological and geometrical structures. 
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These values are taken as samples of a class that should 
be labelled "white". Similarly, we threshold the 
laplacian at a negative level and sample the original 
image at all sub-threshold points. These values are 
taken as samples of a class that should be labelled 
"black". The problem then becomes a 1D two class 
discrimination problem. We could choose the threshold 
at the average of the two class means, but it is 
computationally inexpensive to search for the minimum 
error (i.e. maximum a posteriori) classification 
threshold. This threshold is then applied to the whole 
region. Figure 2 shows representative results of using 
our approach. 

 
 3.2 Region Adjacency Tree 

The core of the recognition algorithm is based on the 
adjacency structure of the connected regions of the 
image. The connected components of the image are 
extracted with a recursive procedure11. During this 
operation information about adjacency of regions is 
also collected. 

The region adjacency information is stored in the form 
of an undirected graph G(N,A). Each of the graph 
nodes n ∈ N represents a connected component of the 
picture. Two nodes are connected by an arc a ∈  A if 
and only if they are adjacent. The number of arcs 
starting or ending at a node is called "degree" of that 
node.  

It has been proven that for binary images the region 
adjacency graph is a bipartite tree12. This means that the 
graph is connected and acyclic (i.e. it contains no 
loops). Moreover the adjacency relationship for this 
type of picture always reduces to a “surrounds” or “is 
surrounded by” relationship12, leading to an oriented 
tree, rooted – in principle – in the picture’s 
“background”. In practice, the “background” cannot be 
identified directly, so our algorithms traverse an un-
rooted and non-oriented tree.  

Once the region adjacency tree of the entire image is 
ready, the fiducial recognition becomes a sub-tree 

isomorphism problem. This consists in searching for a 
one to one correspondence θ() between the fiducial tree 
(nodes and arcs) and one or more subsets of the scene 
tree preserving adjacency, i.e. θ()   must be such that  
∀ ak ∈  A connecting ni and nj ∈  N in G, θ(ak) will 
connect θ(ni) and θ(nj) in θ(G). This is a classical 
problem in computer science10, and can be solved with 
a graph matching algorithm. Its complexity is then the 
same as the graph matching complexity: O(n m1.5), 
where n and m are the cardinality of the scene and the 
fiducial trees14. 

We propose to simplify the sub tree isomorphism by 
imposing a number of constraints on the fiducial 
adjacency structure. The number of levels in the 
fiducial tree is limited to 3. We name these levels: root, 
branches and leaves, with obvious meaning. The root is 
connected to each of the branches and an external 
region. The branches are connected to the root and to a 
number of leaves. We also term a node of degree one 
connected to the root an "empty branch", because it is 
at the same level (and has the same colour) as the other 
branches. Figure 5 illustrates these terms.  

With these restrictions, one fiducial with nb branch 
nodes can then be represented by a sequence {ak} of 
(nb+1) integers: one indicating the number of branches 
and the others indicating the number of leaves in each 
branch. These last nb integers will be indicated as the 
set {lk}. 

With this representation the recognition can be 
performed traversing the scene tree only once.   

Figure 4. Example region adjacency tree. 

Figure 5. Example fiducial (0,1,2,2) and its adja-
cency tree.  
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Every node n* of the scene tree with degree (nb + 1) is 
considered a candidate root; the set {l’k} of the (nb + 1) 
integers will be constructed with the degree of each 
node connected to n*.  The intersection of {lb} and 
{l’b} is then key to the recognition process: if the 
cardinality of {lb} Ç {l’b} is nb, then n* is accepted as 
root of a fiducial instance. 

A controlled amount of tolerance can be introduced in 
this recognition process. For example requiring that at 
least nb'<nb branches conform to the model, or relaxing 
the conditions to accept a node as a candidate branch or 
candidate root. 

In the experiments described in the following sections, 
we introduce tolerance on the number of branches that 
have to match the model. Tolerance value zero requires 
all the branches to be matched to the model, tolerance 
value 3 requires only one branch to be matched. 
Rather than starting from candidate roots, the 
recognition can also be initiated from leaves. All the 
leaves of the scene tree will be labelled as such. Then, 
every node linked to any leaves will be labelled as 
branch, and similarly every node linked to any branches 
will be labelled as a potential root. In this way no 
constraint on the degree of candidate roots is 
introduced. Hence, the conditions for recognition are 
relaxed: tolerance is introduced with respect to the 
topology of the fiducials. With this variation the 
algorithm is capable of recognising partially occluded 
fiducials, but suffers from a drastic increase in the 
number of false positives. Countermeasures to limit this 
problem while retaining the advantages of this approach 
are under consideration. This second method does not 
allow the use of empty branches. 

In this paper we will consider only fiducial trees with 
four branches, hence each will be identified with a 
sequence of four integers representing the number of 
leaves in each branch. The order of the sequence is 
irrelevant from the topological point of view. In 
general, however, the order of the sequence can be used 
to describe some geometrical property of the markers, 
once a convention has been established. For example 
the fiducials in Figure 1 (a) are identified with the 
sequence (1,2,3,4) (from a pure topological point of 
view), or can be described as (1,2,3,4), (1,3,2,4) and 
(1,3,4,2) if considering the order of the branches from 
left to right. In the rest of this article we will focus only 
on the topology of the fiducials, and hence the order of 
the leaves sequences can be ignored. 

 

 4. Experiments Description 

We have designed a set of experiments to prove the 
validity of the system and optimise the fiducial design. 
Although the tests are not a simulation of the real 
conditions of use of the fiducial recognition system (for 
example the test fiducials have not been geometrically 

distorted), they provide a means to compare fiducial 
design and detection alternatives.  

We have used the number of false positives (i.e. the 
regions erroneously classified as a fiducial symbols) 
and false negatives (i.e. fiducial symbols not 
recognized) as performance indices. For the false 
positives case, we have looked for a range of fiducial 
symbols in 10000 varied, cluttered but fiducial-free, test 
images. The range of symbols tested spanned all the 
possible combinations going from 4 to 12 total leaves, 
limiting the maximum number of leaves in any branch 
to 4. The results of this test demonstrated the various 
configurations' resilience to false positives.  

The second experiment required synthetic symbols to 
be introduced in the test image, simulating realistic 
conditions of usage. In particular we have simulated 
spatial variation in the illuminations by randomly 
changing the contrast of part of the symbols. This 
consisted in either reducing the intensity of dark areas 
(to simulate highlight) or reducing the luminosity of 
light areas (to simulate shadow). For the evaluation of 
the results, the contrast variation has been classified in 
four ranges and expressed as a percentage of the 
maximum value (i.e. pure black and white). The four 
ranges are: below 25% of the maximum value , 
between 25 and 50%, between 50 and 75%, and above 
75% of the maximum. The symbols have been 
partitioned randomly as illustrated in Figure 6.  

Instances of the same range of symbols used in the false 
positives test were introduced in random positions and 
at random sizes in each of the test images.  

 5. Experiments Results 

5.1 False Positives 

Figure 7 shows the average number of false positives 
detected in 10,000 test images over (a) all fiducial  

Figure 6. Example frame from the false negative 
test.  
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structures (b) those that have no empty branches and (c) 
those that have at most one empty branch. As tolerance 
(defined in section 3.2) is increased, the number of false 
positives increases. With a tolerance of 0, there are only 
14 false positives over all fiducials. A tolerance value 
higher than 3 causes many false positives and is clearly 

unusable. 

Figure 7 shows that the presence of empty branches 
increases the number of false positives significantly. 
However, empty branches take up less space on the 
fiducial than branches containing leaves: Adding an 
empty branch to an existing fiducial always improves 
its performance; filling that branch with leaves 
improves it further, but costs significantly more in 

fiducial real estate. However, in the remainder of the 
experiments we have considered only structures 
containing one empty branch, at most.  

Figure 8 shows the false positive performance of 

different topological structures. Balanced fiducials -i.e. 
those having branches with equal numbers of leaves- 
perform much better than unbalanced fiducials. This 
leads to the recommendation that balanced fiducials 
should be used where possible, to avoid false 
detections. However, we note that unbalanced fiducials 
can encode information in their ordering of leaves, so 
may be more suitable for some applications. 

 5.2 False negatives 

The results for the false negatives tests have been 
divided as follows. As explained in section 4 and 
illustrated in Figure 6, these tests involved inserting 
fiducials into images and generating an artificial 
shadow overlaying part of the fiducial. We found that 
the proportion of the fiducial that was shadowed had 
little effect on the results except for the cases where 
very little or almost all of the area was in shadow.  

Figure 9 shows results for the shadow being less that 
1/8 or more than 7/8 of the total area, while Figure 10 
shows averages for all other degrees of shadowing. In 
Figure 9, as we would expect, the contrast between the 
shadowed and unshadowed areas does not have a 
significant effect on performance, whereas in Figure 10,  
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Figure 7. False positives vs tolerance.  
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Figure 9. False negatives for structures with no 
more than one empty branch, less than 1/8 of the 
area covered. 
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it does. Figures 9 and 10 both show that false negative 
performance is, on average, roughly the same for 
tolerance 1 and tolerance 2: the higher tolerance does 
not yield a significantly better detection rate. Figure 9 
tells us that at either of these tolerances an unshadowed 
fiducial, or one where the change in illumination 
contrast across the fiducial is limited, will be detected 
99% of the time, while Figure 10 shows that 78% of 
fiducials are detected even when the contrast is in the 
range 51% - 75%. The false negative results are not 
immune to false positives: it can be seen that for 
tolerance > 2 the curves go over the total number of 
fiducial inserted. 

We do not show false negative results for fiducial 
structure because there is little difference in 
performance over all structures. 

 All tests are summarized in Figures 11 and 12. Here 
the normalized number of false positives and false 
negatives are plotted against tolerance and their sum is 
used as a general performance index. The minimum 
indicates a tolerance value of 1 as optimal. The superior 
performance of balanced fiducials on false positives is 
not cancelled by any opposite effect for false negatives, 
so balance is preferable, subject to the caveat about 
imbalance allowing coding of information through 
position of branches in the fiducial. 

 

 6. "d-touch": an Example Application 

The system described has been employed to implement 
a generic framework for tangible used interfaces, as 
described elsewhere14. In d-touch, the fiducials are 
attached to objects to make them recognizable and 
localizable by a low end computer equipped with a 
simple web-cam. The position of the objects can then 
be arbitrarily mapped to any parameter. The objects lie 
on a surface that in this way becomes interactive. The 
surface can also be annotated with visual cues to relate 
position and meaning (or function), enforcing the idea 
if its interactivity. 

In particular we have experimented with mapping 
sounds and their reproduction parameters to the object 
coordinates. Fiducials are also used to mark four fixed 
points on the interactive surface, which are detected and 
used as a reference frame. Then real-time detection of 
fiducials on interaction objects allows the performance 
of music (Fig 13). 

On a consumer grade personal computer (Pentium 4 
1.7GHz) the system works at about 8 frames per second 
using a resolution of 640 by 480 pels, or about 20 fps at 
320 by 240 pels.  

 7 Conclusion 

We have described a fiducial design and detection 
method that offers fast and robust location and tracking 
of markers. We have conducted systematic experiments 
to optimize the thresholding and topological analysis 
algorithms in the method. We conclude that topological 
fiducials provide robustness to illuminate variation and 
false detection. Best performance is achieved with 
balanced fiducials and a detection tolerance of 1. Future 
work will involve the development of further tests to 
protect against false negatives. A large set of real  
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Figure 11. Normalized false positives and false 
negatives, and performance index. High contrast 

Figure 12. Normalized false positives and false 
negatives, and performance index. Medium high 
contrast Figure 13. The “Augmented Musical Stave”  

application.  
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images containing fiducials is being collected to allow 
quantitative evaluation of performance in practical 
conditions. 
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