
Abstract 
 
I develop a variational model for the detection of 
blurred edges. Though yielding a complicated 
general solution, the model gives insight into 
edge detection models previously proposed for 
step edges. In particular it shows that a previous 
IIR solution for step edges is correct even in the 
FIR case, and suggests why operators 
approximating the first derivative of a gaussian 
are successful, despite their suboptimality for 
step edge detection. 
 

1 Introduction 
 
  Canny was the first to pose the image edge 
detection problem in variational terms [1]. He 
proposed three criteria for measuring edge 
detection performance – signal-to-noise ratio, 
edge localization, and the suppression of 
multiple responses – then optimized these jointly 
in a variational framework. His result, obtained 
numerically, was a convolutional operator that 
could be approximated well by the first 
derivative of a gaussian. Subsequently, several 
authors adopted the same approach, modifying 
one or more of Canny’s criteria, or seeking an 
Infinite Impulse Response rather than a Finite 
Impulse Response solution. Many of these 
obtained operators that were similar in shape to 
Canny’s. Representative examples are shown in 
Table 1. An exceptional case was the result 
obtained by Shen and Castan [2]. As is clear in 
the table, their operator is different in form from 
the other examples. 
 
  In this paper I consider a variational approach 
to the detection of blurred edges, showing how 
operators like Canny’s and Shen and Castan’s 
can both be obtained from the same set of initial 
constraints. In the process, I make assumptions 
common to work in optimal edge detection: 
edges are local phenomena demanding linear 
(convolutional) detection; two-dimensional  

 
solutions can be developed by considering one 
dimension first, then generalizing into 
orthogonal gradient-like estimators or families of 
oriented operators; noise is additive white and 
gaussian. 

2 Model for blurred edge 
detection 
 
  Figure 1 shows the model used here for 
detection of blurred edges. It follows Shen and 
Castan’s assumption that the solution will be a 
filter followed by differentiation. 
 
  For g(x), the negative exponential blur model, 
g(x) = a/2 exp(-a|x|), will be used. The parameter 
a represents the amount of blur. We seek the 
positive half of f(x); the negative half will be its 
reflection. Doing this avoids constraining the 
solution to be smooth at 0.  
In the FIR case, fL(x) = fR(-x) with  
                                     f(x) = 0 for |x| > W. 
In the IIR case, fL(x) = fR(-x) with  
                                     f(x) � 0 as |x| � infinity. 
Other constraints are the “zero D.C. gain” 
constraint that the integral from 0 to infinity of  
fR (x) be ½, i.e. that the area under the whole of 
f(x) be 1; and that y(0) = T, which simply 
requires that the output at the edge point exceed 
some threshold. Note that although f(x) has a 
maximum at 0, it is not the case that 

because the solution can lack C1 continuity at 0. 
I minimize signal energy plus noise energy 
everywhere in y(x) except at x=0, considering 
first the interval [0,W). For the IIR case, W tends 
to infinity, which will be considered later.
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Authors Optimization criteria Analytic solution or 

approximation 
Shape of the operator for 
typical parameter values 

Canny[1] Signal-to-noise ratio, 
Edge localization, 
Suppression of multiple 
responses. 
 
 

 

 

 
Deriche [3] As Canny, but for IIR 

solution. 
 
 
 
 
 

 

 

 

Sarkar,  
Boyer [4] 

As Canny, but for IIR, and 
with modification of 
multiple response criterion. 
 
 
 
 

 
 

 

Shen,  
Castan [2] 

Operator will be smoothing 
followed by differentiation. 
Maximize response to step 
edge, Minimize noise in 
both filter and differential 
output. 

 

 

 
 

Table 1: Comparison of edge detectors derived by variational methods. 
 
 
 
 
 
 
 
 

 
 
Figure 1: Model for edge detection: s(x) is a (one-dimensional) step edge of height A; g(x) 
is the blurring function; n(x) is additive gaussian noise; f(x) is the filter to be determined; 

d/dx is the differentiation operation; y(x) is the output signal. 
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3 Variational formulation 

 
We now form the criterion function J such that: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The homogeneous differential equation has constant coefficients, so the solutions are of the form exp(αx). 
The characteristic equation is: 
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4 Special cases 
 
  The final form for f(x) is very general. It 
depends on the parameters of blur, noise 
variance and the lagrange multiplier. By varying 
these parameters it is possible to obtain edge 
profiles similar to any of the earlier edge 
detectors. To gain further insight, we must 
therefore consider special (or, at least, restricted) 
cases. 
 
  In the IIR case, f(x) must tend to 0 as x tends to 
infinity, so the following solution is achieved: 

 
  This is a blended combination of Sarkar and 
Boyer’s result and Shen and Castan’s result. 
With high blur, the second term predominates 
and the operator shape is similar to that in the 
third row of figure 1. As blur diminishes, the 
first term becomes more important and the shape 
moves towards that shown in the bottom row of 
figure 1. 
 
  Returning to the characteristic equation, we see 
that if a is very large (i.e. the edge is almost a 
perfect step), then, by division by a4, it is clear 
that the optimal filter is simply a negative 
exponential: 
 
 

  This result is as true for the FIR case as the IIR 
case. That is, a truncated negative exponential is 
optimal for a step edge in noise. These results 
show that Shen and Castan’s approach does 
indeed produce the optimal operator for step 
edges. This contradicts Canny’s result because 
(a) he had an unnecessary f’(0)=0 constraint, and 
(b) his multiple-response criterion was 
inappropriate for step edges. 
 
  Experimentally I have confirmed Shen and 
Castan’s finding that the negative exponential 
operator gives superior performance to the 
gaussian operator for detection of step edges.  In 
line with the above theory, this is true for 
truncated operators too, provided they are several 
pels wide. However, for blurred edges, the 
negative exponential operator degrades very 
quickly. 
 
  In the general (FIR, blurred) case, the operator 
is, as already mentioned, very general. However, 
I have plotted it for various small values of a (i.e. 
moderate blur) and a range of noise levels. The 
resulting operator shape is almost always close 

to that of Canny, Deriche and Sarkar and Boyer. 
This suggests that these operators all work well 
for blurred edges. Moreover, because blur 
happens at many different scales, the best overall 
operator is going to be some kind of average – 
intuitively suggesting a gaussian shaping. 
Although a wide range of particular choices for a 
in the above formulation yield shapes close to a 
gaussian, the correct analytic process would be 
to integrate over a range of a, which I have not 
been able to do. Nonetheless, the results strongly 
suggest that the first derivative of a gaussian is a 
good operator for detection of blurred edges over 
a range of scales. Canny’s operator’s success 
suggests that although his multiple response 
criterion was incorrect for step edges, it is 
appropriate for preventing spurious responses to 
blurred edges. 

5 Conclusion 

  The variational formulation developed in this 
paper for detection of blurred edges yields a very 
general result. This is reminiscent of (though 
worse than) earlier variational approaches to 
edge detection, where the form of the detector 
depends crucially on free parameters (such as the 
Lagrange multiplier). By restricting the solution 
to IIR or step-edge detection, it is possible to 
reduce the number of parameters and obtain 
insight into previous work. In particular, the 
step-edge detection case yields a negative 
exponential operator, and particular levels of blur 
yield operators that are blended combinations of 
negative exponential and windowed 
trigonometric operators. In appearance these 
operators are similar to earlier gaussian-
smoothed operators. 
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