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Abstract 

 
In appearance-based image processing, high-dimensional statistical models are 
estimated from low numbers of training samples. Sample scatter matrices are 
unreliable estimators of class covariances, yet many methods rely on them for 
dimensionality reduction and often for classification too. This paper argues for 
regularized covariance estimation and introduces a new method suitable for 
appearance-based image processing. The method is demonstrated for face 
detection, where a maximum likelihood classifier trained with regularized 
covariances achieves discrimination and detection results comparable to those of 
complicated multimodal and non-linear classifiers. 

 

1 Introduction 
 
Appearance-based approaches to object detection and recognition treat all n pixels of an image 
equally, stacking them into a measurement vector which is analysed according to models 
derived from the statistics of training samples. They avoid assumptions about geometric or 
structural image features, depending instead on measured dependencies in the training set.  

Since the earliest work in appearance-based analysis (e.g. [1]), it has been 
acknowledged that the high dimensionality of image space is a problem. Often the number of 
training images available N is less than the dimensionality n and therefore much less than M, 
the number required to estimate a distribution’s parameters directly. M’s value depends on the 
model assumed for the multivariate distribution, but it is certainly much more than n. 
Dimensionality reduction is sometimes offered as a solution to this problem, but must itself 
rely on statistics.  Almost always the total scatter matrix is used as an estimate for a global 
covariance matrix and a process then selects combinations of measurements that are supposed 
to characterize the class. Usually the transform which maps into the subspace also scales along 
the new feature axes. Principal Components Analysis (often used for dimensionality reduction 
even when more sophisticated classifiers are used within the subspace) derives the transform 
and the scalings simultaneously as the eigenvectors and eigenvalues of the estimated 
covariance matrix.  The problem for PCA of  N < n is soluble by a simple algebraic trick [2]. 
But this does nothing for the real problem, which is that N << M and that the scatter matrix is 
therefore certainly not a reliable estimate for the covariance matrix. 

Dimensionality reduction is so common as a first stage that appearance-based 
classification is almost synonymous with subspace methods. For face processing, for example, 
Shakhnarovich and Moghaddam begin their review chapter [3] (titled “Face Recognition in 
Subspaces”) with the statement that faces are within a submanifold of low intrinsic 
dimensionality, while Penev and Sirovich [4] seek to discover this intrinsic dimensionality by 
experiment. Yet the only sustainable reason for reduction to a subspace is to allow more 
efficient computation. The suggestion that a particular face's non-zero component outside face 
space is “due to sensor noise” [3] mistakes an approximation (allowing all face variability in a 
low-variance dimension to be approximated by zero) for an essential property. Singular or 
almost-singular scatter matrices certainly do not provide reasons to suppose that face space has 
anything less than full dimensionality: there is little chance that they adequately approximate 
the class covariance. 



The estimation of covariance matrices is not just for dimensionality reduction. In 
subsequent class modelling, the sample to prototype distances may be adjusted according to 
class covariances, or, if a multimodal model is assumed, the subclass covariances. Again an 
eigenspace representation may be used, though more recent developments in appearance-based 
processing have tended to use non-linear classifiers or multiple kernels [5,6]. Even so, the 
reliability of statistical estimates of probability distributions remains a central question. 

Section 2 of this paper reviews options for improving estimates from scatter matrices to 
get more reliable covariances. Section 3 then introduces a new method of covariance matrix 
estimation particularly suited to appearance-based processing. Section 4 reports experiments on 
model selection – that is, the training of mixing parameters in the new method.  

To the author’s knowledge, no previous paper has reported performance for one of the 
most fundamental of statistical classifiers – the maximum likelihood classifier for unimodal 
normal distributions – for tasks like face detection. Perhaps the reason for this is that ML 
classification simply does not work at all when the covariance matrices for the class densities 
are incorrectly estimated. With good estimations, ML classification provides a viable baseline 
for face detection (for example), as section 5 shows. 
 

2 Covariance matrix estimation 
 
2.1 Notation and assumptions 
 
Suppose that each of K classes is characterized, on the basis of n-dimensional training samples, 
by a multivariate normal distribution: 
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where iµ is the class’s mean vector, iΣ is its covariance matrix, and T denotes transpose. 

While not all that follows depends on the normality assumption, the final classification tasks 
and therefore the optimization criterion use the Maximum Likelihood classifier which assumes 
normality, namely, classify a sample x as belonging to class k if 
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which, if the prior probabilities Pi of the classes are known, is related to the Bayes classifier 
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by a scalar offset. 
The use of a unimodal multivariate normal model may be inappropriate for appearance-

based image processing because it assumes a compact, convex distribution with ellipsoidal 
symmetry. (The particular shape of the normal distribution relative to other compact, convex, 
symmetric distributions, has little effect for classification [7].) For example, if the images 
shown in figure 1(a) and 1(b) are to be included in a particular class, then either 1(c) is also in 
the class or the class is not convex.  

 
 
 
 
 
 
 
                  (a)                                               (b)                                              (c) 

Figure 1. Non-convexity of a possible face class 



The question of identifying multi-modality and concavity is not addressed here, so the 
problem illustrated by figure 1 remains. However, section 5 will show that in practice a 
unimodal normal model is effective for a real classification task. 

With the normal model, the characterization of class i amounts to estimating the mean 

vector iµ and covariance matrix iΣ . The estimated values are denoted iµ̂ and iΣ̂ . For iµ̂  the 

mean of the class i training samples is the maximum likelihood estimate, and there is no reason 
to modify this on the basis of any out-of-class samples. The class i training samples also 
provide a scatter matrix 
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where Ni is the number of training samples for class i, of which xi,j is the jth.  
The average scatter matrix is  
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which weights all classes equally, whereas the pooled scatter matrix is 
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which weights all training samples equally. Finally, in some contexts, there may be a total 
scatter matrix, constructed from all the training samples including some which are unlabelled 
but belong to a superclass of which all K classes are part:  
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with N the total number of samples and µ̂ the mean vector of all samples. 

 
2.2 Prior work 
 
Important cases of prior art are Friedman’s Regularized Discriminant Analysis [8] and the 
series of Leave-One-Out-Covariance Matrix estimators proposed by Landgrebe et al [9-12]. 
Although both drew on significant earlier work (for example as reviewed in [13,14]), they are 
now the most-used methods for small-sample high-dimensional covariance matrix estimation. 

In developing Regularized Discriminant Analysis (RDA) [8], Friedman noted that the 
estimate of a class covariance matrix by its training sample scatter matrix is incorrect for any 
reasonable Bayesian classification rule [15]. In consequence, linear discriminant classification, 
where all classes are assumed have the same covariance estimated from the pooled scatter, is 
often superior to quadratic classification by use of the individual scatter matrices. Moreover, if 
there are too few samples overall to form a good estimate of the pooled covariance, it can be 
even better to use Euclidean distance (nearest mean) classification. Friedman therefore 
proposed a regularization scheme to mix each class’s scatter matrix with the pooled matrix and 
with the identity matrix as follows. 
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(This is actually a simplification of Friedman’s original definition which allowed each training 
sample to be differently weighted.) 



The regularization parameters γλ, range from 0 to 1. They are estimated by 

minimizing the leave-one-out cross-validation errors over a grid of values, typically (0, .125, 
.354, .650, 1) for λ and (0, .25, .5, .75, 1) for γ . That is, the parameters are set at one of the 

25 combinations of γλ, values, then for each class, one training sample is removed in turn, 

the scatter matrix is estimated from the remainder, the class covariance matrix is estimated 
according to (8) and (9) and the missing sample is then classified. This is repeated over all 
samples and all classes, yielding a total number of classification errors. The γλ, that give the 

lowest such total are those chosen. 
Friedman reported that RDA outperformed quadratic ML classification using the 

individual class scatter matrices and linear ML classification using the pooled scatter matrix for 
a range of distributions. Effectively it adapted between quadratic and linear classification on 
the basis of the data. Only in the case of equal, highly ellipsoidal covariance matrices with 
mean differences in low-dimensional subspace was linear classification with the pooled scatter 
matrix able to beat RDA’s performance marginally, and then only in relatively low dimensions. 

Landgrebe and coauthors developed a series of estimators that sometimes outperform 
RDA in their tests. The main difference from RDA is that instead of using leave-one-out 
classification to find the optimal parameter values, they measure the log likelihoods of the left-
out training samples for the class to which they belong. They can therefore optimize each class 
in isolation. This allows them to use different parameters for each class, and also saves 
significantly in computation time over RDA.  

The most general estimator proposed by Landgrabe and his collaborators is Mixed-
LOOC1 given by: 
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where ai + bi + c i + di + ei + f i =1 and i = 1,2,…K 
Mixed-LOOC1 subsumes Landgrebe’s earlier models by including terms that weight 

the individual and pooled scatter matrices, their diagonals, and the identity matrix. For each 
class it is required to optimize over the six parameters ai,bi,c i,di,ei, f i , and this is done by 
exhaustive calculation over a coarse grid, as in RDA. Noting from earlier work that the 
multidimensional optima usually only include a pair of non-zero parameter values, Landgrebe 
et al also propose a simplified version, Mixed-LOOC2, that mixes terms of equation (10) in a 
limited set of unequal pairs then selects the best-performing combination. For example, Mixed-
LOOC2 might yield an estimator that combines the class scatter matrix and the diagonal of the 
pooled scatter matrix. 
 

3 A new regularized covariance estimator (RCE) 
 
3.1 Components of the estimator and their weight parameters 
 
In this section a new covariance matrix estimator suited to appearance-based image processing 
is introduced. In order to motivate the design, and explain why it differs from previous 
approaches, it is useful to consider how the class scatter matrices may justifiably be modified 
by samples from outside the class. 

To begin, suppose that the class scatter matrices are well-conditioned and therefore 
invertible with non-zero eigenvalues. In practice they will be singular because there are 
insufficient training samples, but one can imagine adding the smallest amount necessary for 
numerically-stable inversion to the eigenvalues. As a result each class has a highly ellipsoidal 
distribution. The important question is, what sort of operations on the hyperellipsoids make 
sense for regularizing the covariance matrix? 



An n-dimensional  hyperellipsoid has three fundamental properties –  its volume (a scalar), 
its shape (the lengths of its n axes; n-1 free if the volume is known) and its orientation 
(specified by n-1 angles). In principle these can be manipulated independently. Changing the 
volume of the scatter distribution corresponds to changing the matrix determinant or scaling all 
the eigenvalues equally. Changing the shape corresponds to a transformation of the eigenvalues 
that is not a pure multiplication. Changing the orientation corresponds to multiplication by an 
orthogonal matrix. The manipulations actually done to the scatter matrix hyperellipsoid by 
RDA and Mixed-LOOC alter the three properties in combinations as follows: 
1. Adding a multiple of the identity matrix (as done in both RDA and Mixed-LOOC) causes a 

shape change – long axes get shorter, short ones get longer – and also a volume change, 
despite the weights-sum-to-1 constraint.  
a. The shape change is favourable for regularization – it diminishes the importance of 

distances in the low-variance subspace whose eigenvalues are most dramatically 
affected by the scarcity of training data. The weighted sum with the identity matrix has 
two other valuable properties: it is the simplest mechanism for adjusting shape and it 
has a direct interpretation in the pixel domain as the addition of uncorrelated noise.  

b. However, the volume change is less well motivated and the use of the average of the 
diagonal of a scatter matrix in both RDA and Mixed-LOOC to “normalize” the identity 
matrix term is questionable, first because it takes the volume of the non-regularized 
scatter as a reliable estimator of covariance volume, and second because it corresponds 
in the pixel domain to adding different amounts of uncorrelated noise to each class. 

2. Forming a weighted sum of the class scatter and a pooled or average scatter changes all 
three of volume, shape and orientation. However, it is the only justifiable way of effecting 
an orientation change: there are no other training data that could rotate the scatter matrix’s 
axes. In principle, the pooled matrix could be decomposed into an re-orientation and a 
scaling and these applied independently, but the simple addition of matrices has the virtue 
of simplicity and two obvious endpoints – the class scatter and the common scatter. 

3. Forming a weighted sum with the diagonal either of the class scatter or the pooled scatter 
(as done in Mixed-LOOC but not RDA) lacks theoretical justification. If the scales of the 
different dimensions are different, then there is perhaps a rationale, but it is notable that the 
only reported experiments in which the original LOOC significantly outperformed RDA [9] 
were those where the covariance eigenvectors were aligned with the measurement axes and 
where, therefore, the diagonal entries (the variances) would accidentally estimate the full 
covariance. 

In the light of points 1a and 2, the new estimator uses the identity matrix and the common 
sample scatter as components for weighted corrections to the class sample scatter. Following 
point 3, it does not include matrix diagonals. The argument of 1b relates to the weighting of the 
components. A broader issue is whether global or class-wise weight parameters should be used. 
 
Friedman’s RDA has two global parameters which are used in the estimation of every class’s 
covariance. In contrast, Mixed-LOOC1 has six parameters per class, though there is also a 
simplified approximation with just two per class. The new estimator adopts global parameters 
for combining a class’s scatter matrix with the common sample scatter and the identity matrix, 
but recognizing that this produces different volume changes for each class, compensates by 
classification threshold shift parameters between each pair of classes. Section 3.3 gives details. 
 
3.2 Objective functions and optimization method 
 
The two global parameters of Friedman’s RDA are optimized by exhaustive testing over a grid 
of possible values. The objective function is classification error and so all combinations of 
classes are tested and optimized together. Mixed-LOOC’s per-class parameters are also 
optimized by exhaustive testing over grids of possible values. The objective function is average 
log likelihood of class membership which more directly measures change in ellipsoid shape 



than RDA, although there is no clear reason why one should use average rather than a minimax 
or some other biased measure. 

Appearance-based image processing uses estimated distributions for more than just 
classification. Dimensionality reduction and recovery of missing data are two examples. An 
objective function that matches the analysis task to be done may reasonably be expected to be 
superior to one that describes a class in isolation. For example, for face recognition, it would be 
appropriate to use separability of identities as a criterion in the estimation of face space (a 
reverse of the process in [16]). Where conditional densities are used for recovering missing 
data, an appropriate objective function is the mean square error between recovered and actual 
values in training data [17]. Similarly, the formulation that follows, which is directed towards 
classification, follows RDA in adopting a classification error criterion. 

Testing parameters on a sparse grid is a global but coarse search for the best 
combination of values. If the objective function has a single optimum, a more accurate estimate 
for the same computation time would be to use a standard iterative multidimensional 
optimization scheme. It is therefore an empirical question which approach the new estimator 
should use. Section 4 discusses this further in the light of experimental results. 
 
3.3 Regularized Covariance Estimator (RCE) Method 
 
RCE estimates the covariance matrix for class i as: 
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α goes from 0 to 1 butβ is allowed to vary freely so the estimate clearly has a non-normalized 

effect on covariance volume (determinant). This does not affect the relative values of the 
eigenvalues nor the direction of the eigenvectors, so it is of no consequence in dimensionality 
reduction or data recovery. However it matters for classification. RCE therefore modifies the 
classification rule given by equation (2) to 
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where the iγ are “volume correction” scalars meant to undo the differential effects on the 

volume of the different scatter matrices caused by the addition of the same Iβ  to each class in 

equation (11). All of these are relative to class 1 for which there is no 1γ . 

α and β are tested either on a grid or at points chosen sequentially by an optimizer. At 

each such βα , a subset of the training samples is used to develop scatter matrices while the 

remainder are classified according to the covariances estimated from (11) and the ordinary ML 

decision rules (2), (3). A multivariate optimization is then done over the iγ s to choose the 

values that when added to the ML distances as shifts will give optimal classification. This 
optimization is K-1-dimensional, so in the case of two classes, it reduces to finding one shift 
which minimizes the classification error rate. The shift then has a similar effect on the final 
classification as the determinants and a priori probability terms in (3) and (4) have. 
 

4 Experiments on model selection 
 
To examine the performance of the new covariance estimator and compare it with alternative 
approaches, a series of experiments on two face-image classification problems were conducted. 
Both of these used 19x19 greyscale pictures for a total dimensionality of 361. All training 
images were normalized to the same luminance mean and variance and the face training images 
were centred just above the nose tip. The applications were discrimination of faces from non-
faces and discrimination between smiling and neutral faces. The latter is an example of a 
relatively small-sample-size problem. Table 1 summarizes the experiments, with each major 
row representing a series of related tests. For each major row, the following were done: 



1. two experiments where α and β were applied over a dense grid, the optimal value of γ  

calculated for each case (note that there is only one γ for two-class problems), the best 

γβα ,, combination determined and then applied to a test set. The table shows the sizes of 

(a) the training subset used to estimate the scatter matrices, (b) the training subset classified 
by regularized estimates defined by equation (11) from which optimal values for 

γβα ,, were obtained, and (c) the test set classified by the final regularized classifier, for 

one of those two experiments. In the second experiment, the roles of the second training 
subset and the test set were reversed. Table 1’s results are for the worse of those two cases.  

2. unregularized quadratic ML classification and pooled-scatter linear ML classification 
experiments. The results are included in the table for comparison. 

3. a pair of 1D experiments, whose detailed results are not shown. In one of these, mixtures 
were supplemented with weighted diagonals of the scatter matrices to provide a comparison 
with Mixed-LOOC-type classification, and in the second the equal weighting of the identity 
matrix for all classes was replaced by an average-variance weighting as used in RDA. In 
each case the form used in the new RCE outperformed the alternatives. 

Briefly, table 1 shows that RCE provides much better performance than classification 
without regularization, even where the per-class sample size is over five times the 
dimensionality (as in the face/non-face experiment). Regularization with both the identity 
matrix and a pooled or common scatter matrix is beneficial, and RCE mixes these according to 
sample size and the nature of the data. Mixing with total scatter over many unclassified images 
rather than pooled scatter is only of benefit at lower sample sizes. The mixtures resulting from 
different sets of training samples are closely consistent.  

Figure 2 shows a typical βα , optimization surface where at each point the optimal γ has 

been used to calculate the log error rate. In common with other optimization surfaces measured 
during the experiments, this has multiple minima, but a large area over which the results are 
close to the optimal. Rather than the iterative optimizer approach suggested in sections 3.2 and 
3.3 therefore, it appears that global optimization over a fairly coarse grid will be most 
computationally efficient for approximate solutions. Notably, a good estimation is available by 
regularizing with the identity matrix alone. Since this scales but does not rotate the axes of the 
distribution, it suggests that PCA using the scatter matrix is appropriate for selecting highest-
variance dimensions, but not for scaling within the subspace. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. An optimization surface corresponding to the first major row in table 1. 

 

5 Face Detection Application 
 
The experiments in section 4 yield regularized face and non-face covariance matrices, so it is 
reasonable to apply these to face detection. Two of the best known appearance-based face 
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Estimated parameter 
values Experiment Classes 

Sample 
sets 

Num 
samp-
les per 

set α β γ 

Classif
-ication 
errors 

Error 
rate 

Train Si 2249 
Train 
α,β,γ 

1369 Faces 

Test 1370 
Train Si 3203 
Train γ 1276 Non-faces 

Test 1276 

Unclassified 
Train 
Stotal 

13200 

0.7 100 -46 

8 out 
of 2646 
(=1370
+1276) 

0.30% 

No regularization 73  2.76% 

Face/non-face 
discrimination 
with large pool 

Pooled covariance 288  10.88% 
Train Si 2249 
Train γ 1369 Faces 

Test 1370 
Train Si 3203 
Train γ 1276 Non-faces 

Test 1276 

1 1000 -29 

4 out 
of 2646 
(=1370
+1276) 

0.15% 

No regularization 73 2.76% 

Face/non-face 
discrimination 
with no extra 

pool 

Pooled covariance 88 3.33% 
Train Si 120 
Train γ 44 Smiles 

Test 69 
Train Si 200 
Train γ 100 Neutral 

Test 136 
Unclassified 

faces 
Train 
Stotal 

2249 

0.5 5000 1 
16 out 
of 205 

7.80% 

No regularization 68 33.2% 

Smile/neutral 
discrimination 
with large pool 

Pooled covariance 31 15.1% 
Train Si 120 
Train γ 44 Smiles 

Test 69 
Train Si 200 
Train γ 100 Neutral 

Test 136 

0.5 5000 1 
14 out 
of 205 

6.83% 

No regularization 68 33.2% 

Smile/neutral 
discrimination 
with no extra 

pool 

Pooled covariance 40 19.5% 

Table 1. Model Selection Experiments and Results (see section 4) 
 
detectors are due to Rowley et al [18] and Sung and Poggio [19]. The former uses multiple 
neural networks that scan a 20x20 window over scaled versions of the image while the latter 
uses elliptic k-means training of a multimodal structure of 6 face clusters and 6 non-face 
clusters with a similar scanning mechanism on 19x19 windows. Figure 3 shows examples of a 
face detection scanner equivalent to those of [18,19] but using maximum likelihood 
classification of each 19x19 window as face or non-face, according to regularized covariance 
matrices. The misdetection rates are comparable to those of [18] and [19]. Errors are illustrated 
on the bottom row of figure 3 – false positives on the left and a false negative on the right. The 
latter was one of only three missed faces on a much larger test set. 
 Having found faces as in figure 3 it is a simple matter to feed detected windows to the 
smiling/neutral classifier also developed in section 4. The result for Mona Lisa, for example, is 
neutral, though that face is particularly close to the classification boundary.  
 
6 Conclusion 
 
The new covariance estimator RCE introduced in this paper is especially suited to appearance-
based image analysis. The new estimator differs from previous mechanisms by: (a) 



regularizing all classes in the same way, then compensating for volume distortions via shift 
parameters; (b) using an application-dependent cost function.  

Although just one demonstration of regularized covariance estimation, figure 3 is 
remarkable, not because it represents a new sophisticated classifier, but because it shows how 
one of the most fundamental of statistical classifiers can achieve competitive performance 
when the class covariance matrices are properly estimated. This suggests that maximum 
likelihood classification between unimodal, compact, convex, normal distributions should be 
the baseline against which more complicated approaches are compared, and that appearance-
based image processing in general might benefit from regularized covariance estimation.  
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Figure 3. Example outputs of the Maximum Likelihood Face Detector 


