
Media ECAD. CLIP tutorial 3.

Blocks, meshes and geometric transformations

John Robinson

3.1 The irange class

CLIP only has three data types or classes1. colour_picture and picture_of_int were introduced
in the first week of this tutorial. The third and last data type, irange, is usually used in combination with
either colour_picture or picture_of_int to process many pels simultaneously.

An irange object represents a sequence of equally-spaced integers such as (1, 2, 3) or (3, 7, 11, 15, 19) or
(0, 1, 2, 3, … 511). It is instantiated through a statement like

 irange block(0,1,7);

which initializes block to represent the sequence (0,1,2,3,4,5,6,7). In general the three arguments in the
constructor are the first, second and last integers in the sequence. So

 irange evenpoints(0,2,254);
 irange oddpoints(1,3,255);

set up two sequences consisting respectively of all the even and all the odd integers from 0 to 255.

Other ways to construct an irange are:

irange justonepoint(67); // Sequence with just one value
// (equivalent to (67, 67, 67)).

 irange anotherblock(block); // Copy constructor

You can do simple arithmetic reassignment on an irange such as

 evenpoints += 64;

which, with evenpoints as constructed earlier, would change it to the sequence (64, 66, 68, 70, … 318).
It is also possible to use expressions like (200 + block) which evaluates to
(200,201,202,203,204,205,206,207) for the irange object block, but doesn't change block's value.

An irange object is used to index a colour_picture or a picture_of_int to process a block of
pels simultaneously. This idea is borrowed from Matlab, and, as in Matlab, it is a very powerful feature,
but takes a little while to get used to. Overleaf is a program that demonstrates some of the many things you
can do by indexing colour_pictures or picture_of_ints with iranges. Although the program's
only purpose is to show how irange works, it is worth studying carefully and implementing. (This is the
last long program that you will be asked to enter by hand from the tutorial, but please don't skip the
entering, compiling, debugging, testing, and examining of the output, because a good understanding of this

1 Earlier versions included classes like picture_of_double, vrange, and picture as a template
class. These are mentioned in the IEEE Trans on Education paper, but by the time it was published I had
already eliminated them to make the library simpler.

code will equip you to use iranges and picture arithmetic.) The code contains several comments which
should guide you through its processing of 16 square blocks. Ensure you understand how the code moves
from block to block. Notice that the input from the other picture is not always from the same block as the
main picture. Also note that there are three assignment operators on pictures that do not have their
conventional meanings:

destpic |= sourcepic; replaces each pel in destpic (or in the irange indexed
block of destpic) with the absolute difference between that
pel and the corresponding pel in sourcepic.

 destpic ^= sourcepic; replaces each pel in destpic with the squared difference
 between that pel and the corresponding pel in sourcepic.
 destpic &= sourcepic; does conditional replacement. For each pel in destpic, if
 the corresponding pel in sourcepic is non-negative, the
 value is replaced by the sourcepic value. Otherwise the
 destpic value is unaffected. This provides a simple kind of

transparency that can be used for processing irregularly-
shaped sprites or picture layers.

// Program to demonstrate some of the features of irange
#include "picture.h"
// Some callbacks used in the demonstration
int thresh1(int& pel) {
 if (pel < 128) pel = 0;
 else pel = 255;
 }
int thresh2(int& outpel, const int& inpel) {
 if (inpel < 128) outpel = 0;
 else outpel = 255;
 }
int average(int& outpel, const int **buf) {
 outpel = buf[-1][-1] + buf[-1][0] + buf[-1][1] +
 buf[0][-1] + buf[0][0] + buf[0][1] +
 buf[1][-1] + buf[1][0] + buf[1][1];
 outpel /= 9;
 }

int main(int argc, char *argv[]) {
 if (argc != 1) {
 cerr << "Usage: irangedemo";
 exit(1);
 }
 colour_picture pic("../pics/baboon512");
 colour_picture other("../pics/lenna512");
 irange basic(0,1,127); // Basic block size
 irange evensamples(0,2,254); // For demos with subsampling
 irange rowrange(basic);
 irange colrange(basic);
 irange otherrowrange(basic);
 irange othercolrange(basic);
 // First row of four blocks demos operations with integers
 // Leave very first block alone: Don't do anything

 // For second block, set whole block equal to 50
 colrange += 128;
 pic[rowrange][colrange] = 50;
 // Invert third block
 colrange += 128;
 pic[rowrange][colrange] *= -1;
 pic[rowrange][colrange] += 256; // Move back into [0,255] range
 // Halve amplitude of fourth block
 colrange += 128;

 pic[rowrange][colrange] /= 2;

 // Second row of four blocks demos arithmetic operations with
 // another picture
 // First block is just copy from (top left block of) other picture
 colrange = basic; // Reset colrange to (0,1,127)
 rowrange += 128;
 pic[rowrange][colrange] = other[otherrowrange][othercolrange];
 // Second block is copy from elsewhere in other picture
 colrange += 128;
 pic[rowrange][colrange] = other[200+otherrowrange][200+othercolrange];
 // (Note how adding an int to an irange yields a shifted irange)

 // Third block is average of block at this location in two pictures
 colrange += 128;
 pic[rowrange][colrange] += other[rowrange][colrange];
 pic[rowrange][colrange] /= 2;
 // Fourth block is difference between two blocks (plus an offset)
 colrange += 128;
 pic[rowrange][colrange] -= other[rowrange][colrange];
 pic[rowrange][colrange] += 128; // To give vals mostly in [0,255].

 // Third row of four blocks demos the three non-arithmetic operators
 // and iranges with different spacings.
 colrange = basic;
 rowrange += 128;
 // The operator |= produces the absolute difference between blocks
 pic[rowrange][colrange] |= other[rowrange][colrange];

 // The operator ^= produces the squared difference between blocks
 colrange += 128;
 pic[rowrange][colrange] ^= other[rowrange][colrange];
 // Have to scale result or else whole picture will display poorly
 int blockmax = pic[rowrange][colrange].max(); // NOTE: max() applies
 // just to specified
 // block.
 pic[rowrange][colrange] *= 255;
 pic[rowrange][colrange] /= blockmax;

 // The operator &= does conditional replacement. If the pel in
 // the source picture is greater than or equal to 0, it replaces
 // the destination picture. If less than 0, the source pel
 // remains.
 // To illustrate this, we need to create a masked version of part
 // of the other picture
 colour_picture temppic(128,128);
 temppic = other[rowrange][colrange];
 // Let's just preserve a disk of temppic, by putting negative values
 // into the pels outside a disk.
 const int radius = 50;
 for (int i = 0; i < 128; i++)
 for (int j = 0; j < 128; j++) {
 int x = j - 64; // Relative to centre of pic
 int y = i - 64;
 if (x*x + y*y > radius*radius)
 temppic[i][j] = -1;
 }
 // Now, &= should do appropriate masking
 colrange += 128;
 pic[rowrange][colrange] &= temppic;

 // Using the fourth block on the third row, we demonstrate
 // subsampling a source

 // block and putting it in a destination block

colrange += 128;
 pic[rowrange][colrange] = other[evensamples][evensamples];
 // Note that although this is the only example where the other
 // samples have a different spacing, all the operators illustrated
 // here work no matter what the irange spacings. What counts is
 // that the number of integers in the irange sequences are the same.

 // The final row of four blocks demos member functions applied just
 // to irange-specified blocks.
 // (Already seen max() member function on a block.

// min() works similarly.)

// Write a block of the picture to a file
 colrange = basic;
 rowrange += 128;
 pic[rowrange][colrange].write("temppic");

 // Apply a point operator to output picture
 colrange += 128;
 pic[rowrange][colrange].point(thresh1);
 // Apply a point operator to other picture and show in output
 colrange += 128;
 temppic = other[otherrowrange][othercolrange];
 pic[rowrange][colrange].point(temppic,thresh2);
 // Apply a neigh operator to other picture and show in output
 colrange += 128;
 pic[rowrange][colrange].neigh(temppic,average);
 pic.show();
 pic.inspect();
 }

Using only simple assignment (e.g. pic2[outrowrange][outcolrange] =
pic1[inrowrange][incolrange];) it is possible to move blocks of pictures around, stack pictures
together, or cut out subpictures. For example, here is a program to extract a subimage of a
picture_of_int and save it as a new picture. This program can easily be modified to work on
colour_pictures too.

// Extract a subimage from a monochrome picture
#include "picture.h"
int main(int argc, char *argv[])
 {
 if (argc != 7) {
 cerr << "subimage inpic outpic xstart ystart xsize
ysize\n";
 exit(1);
 }
 int colstart = atoi(argv[3]);
 int rowstart = atoi(argv[4]);
 int ncols = atoi(argv[5]);
 int nrows = atoi(argv[6]);
 picture_of_int in(argv[1]);
 picture_of_int out(nrows, ncols);
 irange rowrange(rowstart,rowstart+1,rowstart+nrows-1);
 irange colrange(colstart,colstart+1,colstart+ncols-1);
 out = in[rowrange][colrange];
 out.write(argv[2]);

 return 1;
 }

Also using simple assignment, but this time assigning from an integer constant (e.g.
pic[rowrange][colrange] = 255), it is possible to do efficient drawing of vertical and horizontal
lines and filled blocks. Here, for example, is a program to overlay a mesh on a colour picture.

#include "picture.h"
// Overlays a green mesh on a picture
int main(int argc, char *argv[]) {
 if (argc != 4) {
 cerr << "Usage: overlaymesh inpic outpic meshspacing\n";
 exit(1);
 }
 colour_picture in(argv[1]);
 int spacing = atoi(argv[3]);
 irange allrows(0,1,in.nrows()-1);
 irange allcols(0,1,in.ncols()-1);
 irange spacedrows(0,spacing,in.nrows()-1);
 irange spacedcols(0,spacing,in.ncols()-1);
 // Draw horizontal lines
 if (in.ismonochrome())
 in.mono[spacedrows][allcols] = 255;
 else {
 in.green[spacedrows][allcols] = 255;
 in.red[spacedrows][allcols] = 0;
 in.blue[spacedrows][allcols] = 0;
 }
 // Draw vertical lines
 if (in.ismonochrome())
 in.mono[allrows][spacedcols] = 255;
 else {
 in.green[allrows][spacedcols] = 255;
 in.red[allrows][spacedcols] = 0;
 in.blue[allrows][spacedcols] = 0;
 }
 in.write(argv[2]);
 }

 (By the way, if you forget to test whether the colour_picture is monochrome, CLIP is fairly
forgiving. In the monochrome case, the green, red and blue buffers in the picture are all set up to point to
the monochrome buffer, so whichever colour channel you write last is what the picture looks like.)

3.2 Block Matching with CLIP: A simple template matching example.

The way to add/subtract/etc. pictures and parts of pictures is by using the assignment operators +=, -=, etc..
We have already seen many examples like

 outpic += inpic;

and
 outpic[orowrange][ocolrange] -= inpic[irowrange][icolrange];

If you tried instead something like

 outpic = outpic + inpic;

you would not get the same kind of result. CLIP does support operators +, -, *, /, |, ^ between pictures, but
the result of the operation is not a picture but rather an integer corresponding to the sum of all the pointwise
additions/subtractions/etc.. In other words the result of

 outpic + inpic

is a single integer representing the sum of all the pel-by-pel sums between outpic and inpic (which, of
course, also equals the sum of all the pels in inpic plus the sum of all the pels in outpic). The statement

 outpic = outpic + inpic;

sets every pel of outpic to this value. (Remember that assigning an integer to a picture_of_int or a
colour_picture sets every pel to that integer value.)

Why do the operators +,-,*,/,|,^ work this counter-intuitive way? There are two reasons. The first is that to
return a picture from an operation like + requires the construction of a temporary object, with all the
allocation and deallocation of memory that that entails. So that would be inefficient. The second, more
important, reason, is that CLIP's interpretation of +,-, etc. provides a powerful idiom for doing convolution,
comparison, block matching, and other important operations.

CLIP provides both Sum Absolute Error and Sum Squared Error operators for matching blocks of a picture.
Without further ado, here is a program that looks for the best match between a template picture and any
number of other pictures. It does this by finding the position in the test picture where the Sum Absolute
Error between the template and the picture is at a minimum. Enter this program, compile and debug it. We
will then apply it to an experiment in template matching.

#include "picture.h"
int main(int argc, char *argv[]) {
 if (argc < 3) {
 cerr << "Usage: matchtemplate templatepic inpic1 inpic2 ...
\n";
 exit(1);
 }
 picture_of_int tpic(argv[1]); // Template picture
 picture_of_int inpic(argv[2]);
 inpic.show(argv[2]);
 irange trows(0,1,tpic.nrows()-1);
 irange tcols(0,1,tpic.ncols()-1);
 irange onepoint(0);
 for (int argnum = 2; argnum < argc; argnum++) {
 inpic.read(argv[argnum]); // First time just re-reads
 int matchval;
 int bestmatchval = 100000000; // A large number
 int besti, bestj;
 for (int i = 0; i < inpic.nrows(); i += 2) {
 for (int j = 0; j < inpic.ncols(); j += 2) {
 matchval = inpic[i+trows][j+tcols] | tpic;
 // Above line gives absolute difference.
 // Use ^ to get squared difference
 if (matchval < bestmatchval) {
 bestmatchval = matchval;
 besti = i;
 bestj = j;
 }
 }

 }
 // Draw a box at found location
 inpic[besti+trows][bestj+onepoint] = 0;
 inpic[besti+trows][bestj+tpic.ncols()+onepoint] = 0;
 inpic[besti+onepoint][bestj+tcols] = 0;
 inpic[besti+tpic.nrows()+onepoint][bestj+tcols] = 0;
 inpic.reshow(argv[argnum]);
 }
 inpic.inspect();
 }

Go to the ~/clip/sequence directory and display the picture stennis_000. Use di to determine a rough
bounding box for the table tennis ball. Then use subimage to extract that region from stennis_000 as a
small, monochrome template. Now try matchtemplate on the whole stennis sequence (Do this with the
command "matchtemplate templatepic ../sequence/stennis*".) Observe how well the template fits the ball in
different parts of the sequence. Consider (a) What could be done to improve accuracy? (b) How could
frame-to-frame information be used (i.e. how could you track the ball rather than repeatedly detecting it)?
(c) Why is this program so slow?! How could you speed it up?

3.3 Downsampling, upsampling, downsizing and upsizing.

Downsampling is the retention of every nth sample of a signal, throwing the rest away. Upsampling is one
step in recovering an original signal from a downsampled version, by interposing the required number of
zeros between samples. The programs downsample.cpp and upsample.cpp in ~/clip/bin/src do
downsampling and upsampling by factors of two, and they can work horizontally only, vertically only, or in
both directions at once. They rely on iranges, as you can see by reviewing the source code. To see how they
work, you could run:
 downsample inpic smallpic b e
 upsample smallpic outpic b e
 di inpic smallpic outpic

downsample appears to provide a quick way of halving the size of an image. But is it the best way? Should
there be some pre-filtering of the input first, before samples are thrown away? Perhaps a quarter-sized
image should be generated by taking the average of each block of four pels in the original image. What do
you think?

upsample yields a sparse image of the same size as the original. What is the best way to fill in the gaps?

The program psnr is provided (in ~/clip/bin) to measure the Peak Signal to Noise Ratio between images.
Usually it is used to compare a corrupted version of an image with the original. If you downsample an
image, then upsample it as in the sequence above, then do "psnr inpic outpic" you will obtain a very low
signal to noise ratio, because all the gaps in outpic are effectively noise not signal. You can measure the
effectiveness of any gap filling by seeing how it improves the PSNR.

Downsampling is attractive for data compression. But it is only worth using if a close approximation to the
original can be recovered. What we need is a sequence of operations like:
 prefilter inpic filteredpic
 downsample filteredpic smallpic b e
 (Now we have achieved 4:1 data reduction by keeping smallpic only)
 upsample smallpic sparsepic b e
 postfilter sparsepic outpic

So the problem is to find a good prefilter and a good postfilter.

3.4 Geometric operations on pictures: Indexing with doubles and the map() function

downsample reduces the size of an image by removing every other sample. But what about scaling images
to arbitrary sizes? You could just throw away samples irregularly (or repeat samples to increase image
size), but a nicer solution is to interpolate values. CLIP will do this for you. It provides a way to index
pictures using doubles, and automatically works out the bilinearly-interpolated values corresponding to
the between-pel position that you specify. Here is a general-purpose scaling program that uses double
indexing.

// Resize a picture by a given scale factor
#include "usage.h"
#include "picture.h"
#include "stdlib.h"
int main(int argc, char *argv[]){
 usage("resize inpic outpic scale");
 colour_picture in(argv[1]);
 double scale = atof(argv[3]);
 int outr = (int)(in.nrows()*scale);
 int outc = (int)(in.ncols()*scale);
 colour_picture out(outr, outc, 64, in.ismonochrome());
 if (in.ismonochrome()) {
 for (int i = 0; i < outr; i++)
 for (int j = 0; j < outc; j++) {
 out.mono[i][j] = in.mono[i/scale][j/scale];
 // The values i/scale and j/scale are doubles:
 // CLIP automatically bilinear-interpolates

// from surrounding pels.
 }
 }
 else {
 for (int i = 0; i < outr; i++)
 for (int j = 0; j < outc; j++) {
 out.red[i][j] = in.red[i/scale][j/scale];
 out.green[i][j] = in.green[i/scale][j/scale];
 out.blue[i][j] = in.blue[i/scale][j/scale];
 }
 }
 out.write(argv[2]);
 }

[Aside: This program uses the macro “usage()” which is defined in usage.h. usage() is not part of
CLIP, but a simple macro I use to test that the program is called with the correct number of arguments, and
print a usage message and exit if not. See usage.h for how it works. If you want to use usage(), be aware
that the string argument that it takes must have the same number of whitespace-separated words as the
correct usage command line.]

The above program, resize.cpp, is rather slow, because, for every output pel, there is not only a bilinear
interpolation going on, but also the processing of four operator[] calls. CLIP therefore also provides a
function map() that can be used instead of indexing with doubles. Using map() also means you don't
need the if – else handling of monochrome and colour images. Here is the equivalent program, resize2.cpp,
using map().

// Resize a picture by a given scale factor
#include "usage.h"
#include "picture.h"
int main(int argc, char *argv[]){
 usage("resize inpic outpic scale");
 colour_picture in(argv[1]);
 double scale = atof(argv[3]);
 int outr = (int)(in.nrows()*scale);
 int outc = (int)(in.ncols()*scale);
 colour_picture out(outr, outc, 64, in.ismonochrome());
 for (int i = 0; i < outr; i++)
 for (int j = 0; j < outc; j++) {
 out.map(j, i, in, j/scale, i/scale, 0);
 }
 out.write(argv[2]);
 }
The arguments of map() are explained in picture.h, but of particular interest is the last argument which
defines transparency. Whereas the &= operator is a blunt instrument for conditional replacement of pels in
blocks, map provides 256 levels of transparency that can be used to combine pels from the two pictures
concerned. In resize2.cpp the transparency argument is set to 0, meaning that nothing of the value that was
in the picture out is retained. But with transparency = 255, almost all of the original value is retained. With
transparency = 128, the old and new values are averaged.

Programs like resize can be used to generate geometric effects. Here is a program that uses repeated scaling
to give the impression of a picture growing until it fills the window.

// Grow picture until it is full size
#include "usage.h"
#include "picture.h"
#include "stdlib.h"
int main(int argc, char *argv[]){
 usage("tunnel inpic");
 colour_picture in(argv[1]);
 colour_picture out(in.nrows(), in.ncols(), 64,
in.ismonochrome());
 double scale = 0.1;
 out.show(argv[1]);
 while (scale < 1) {
 int nr = (int)(in.nrows()*scale);
 int nc = (int)(in.ncols()*scale);
 int startr = (in.nrows() - nr)/2;
 int startc = (in.ncols() - nc)/2;
 for (int i = 0; i < nr; i++)
 for (int j = 0; j < nc; j++) {
 out.map(j+startc, i+startr, in, j/scale, i/scale, 0);
 }
 scale += 0.1;
 out.reshow();
 }
 out = in;
 out.reshow();
 out.inspect();
 }

CLIP does not directly support other geometrical operators – it's an Image Processing library rather than a
Graphics library. However, it is reasonably easy to implement most important geometric transformations.
Overleaf is a program, rotate.cpp, to rotate an image through a given angle. This illustrates coordinate
transformation by multiplying with a 2 x 2 rotation matrix:

















−

=







y
x

Y
X

θθ
θθ

cossin
sincos

// Program to rotate a picture about its centre
#include "picture.h"
#include "usage.h"
#include "math.h"
#include "stdlib.h"
int main(int argc, char *argv[]) {
 usage("rotate inpic outpic angle[degs]");
 colour_picture temp(argv[1]);
 int nr = temp.nrows();
 int nc = temp.ncols();
 int border = nr;
 if (nc > nr) border = nc; // Very large border
 colour_picture in(argv[1],border);
 in.dc_pad();
 colour_picture out(in);
 double theta = atof(argv[3]);
 theta *= 3.141592/180; // Convert to radians
 double sint = sin(theta);
 double cost = cos(theta);
 for (int i = 0; i < nr; i++)
 for (int j = 0; j < nc; j++) {
 int xout = j - nc/2;
 int yout = i - nr/2;
 double xin = xout*cost + yout*sint + nc/2;
 double yin = -xout*sint + yout*cost + nr/2;
 out.map(j, i, in, xin, yin, 0);
 }
 out.write(argv[2]);
 }

The new CLIP material in this program concerns the image border. Because the picture is going to be
turned, parts of the border will become visible. Therefore it is important that the border is large enough.
Note that when the colour_picture in is instantiated, a large border value is passed in explicitly as the
constructor's second argument. Also, I choose to fill the border out so that, after rotation, the boundaries are
still smooth. The line
 in.dc_pad();
accomplishes this.

3.5 Exercises

Do one exercise from part A and one from part B. Document both in your logbook. If you have time, try
one exercise from part C.

Part A: Exercises based on questions in the tutorial.

1. Consider the experiment in Section 3.2. Suggest an answer to each of the questions posed there
and investigate one of them by appropriate programming. The questions are: (a) What could be done to
improve accuracy? (b) How could frame-to-frame information be used (i.e. how could you track the ball
rather than repeatedly detecting it)? (c) Why is this program so slow?! How could you speed it up?

2. Consider the process discussed in Section 3.3. Conduct experiments to find a good
prefilter/postfilter pair for downsampling and upsampling. You should be able to achieve a better PSNR
than with
 resize inpic smallpic 0.5
 resize smallpic outpic 2
 psnr inpic outpic

Part B: Extensions to programs in the tutorial.

3. Convert subimage.cpp into an interactive image cropping program.

4. Implement a program that moves sprites around a window using the &= operator.

5. Convert rotate.cpp into a program that spins an image through a full turn in small increments.

Part C: New programs

6. Many lenses introduce radial distortion into pictures. Develop a program that removes radial
distortion by applying the following transformation to the image:

yrY
xrX

)1(
)1(

2

2

α

α

−=

−=

where x, y, X and Y are relative to the centre of the picture, α is a user-specified parameter, and

222 yxr +=

Make the program interactive so a user can judge barrel/pincushion effects by eye.

7. Write a program that will draw and fill a given arbitrary quadrilateral. Aim for speed.

Adapt the program to warp a rectangular image onto the quadrilateral.

8. Consider the Paintshop Pro flow effects. These involve localized geometric warping. How would
you implement a tool to rotate a small disk in the picture and have a surrounding annulus interpolate
between the rotated disk and the unrotated remainder of the picture? Implement this.

	3.1The irange class

